全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation

DOI: 10.1155/2012/928954

Full-Text   Cite this paper   Add to My Lib

Abstract:

In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion. 1. Introduction Heart transplantation is the final therapeutic option for heart failure [1]. Over the past two decades, advances in immunosuppression and antimicrobial agents have improved outcomes after heart transplantation. An analysis of the UNOS database in 14,401 first-time orthotopic heart transplant recipients between the years 1999 and 2006 showed that the survival rate at 30 days, 1 year, and 5 years was 94%, 87%, and 75%, respectively, for the young group (<60 years of age) and 93%, 84%, and 69% for the older group [2]. Graft vasculopathy, a unique form of accelerated coronary artery disease, is a major cause of late graft failure [3]. The disease is characterized by intimal thickening mainly due to smooth muscle cell proliferation and fibrosis. Occlusive narrowing of the coronary vessels can develop within a few months and is not prevented by current treatments. The pathogenesis of graft vasculopathy is complex and has been reviewed elsewhere [4–6]. The observation that, while graft coronary arteries develop lesions, the host’s native arteries

References

[1]  M. M. Koerner, J. B. Durand, J. A. Lafuente, G. P. Noon, and G. Torre-Amione, “Cardiac transplantation: the final therapeutic option for the treatment of heart failure,” Current Opinion in Cardiology, vol. 15, no. 3, pp. 178–182, 2000.
[2]  E. S. Weiss, L. U. Nwakanma, N. D. Patel, and D. D. Yuh, “Outcomes in patients older than 60 years of age undergoing orthotopic heart transplantation: an analysis of the UNOS database,” Journal of Heart and Lung Transplantation, vol. 27, no. 2, pp. 184–191, 2008.
[3]  J. D. Christie, L. B. Edwards, A. Y. Kucheryavaya et al., “The registry of the international society for heart and lung transplantation: twenty-seventh official adult lung and heart-lung transplant report 2010,” Journal of Heart and Lung Transplantation, vol. 29, no. 10, pp. 1104–1118, 2010.
[4]  M. Rahmani, R. P. Cruz, D. J. Granville, and B. M. McManus, “Allograft vasculopathy versus atherosclerosis,” Circulation Research, vol. 99, no. 8, pp. 801–815, 2006.
[5]  G. Vassalli, A. Gallino, M. Weis et al., “Alloimmunity and nonimmunologic risk factors in cardiac allograft vasculopathy,” European Heart Journal, vol. 24, no. 13, pp. 1180–1188, 2003.
[6]  D. Schmauss and M. Weis, “Cardiac allograft vasculopathy: recent developments,” Circulation, vol. 117, no. 16, pp. 2131–2141, 2008.
[7]  S. Fiedel, J. Bayer, M. Schaub et al., “The influence of antigen-dependent and antigen-independent factors on the development of graft vasculopathy in a fully allogeneic cardiac allograft model in the rat,” Transplantation Proceedings, vol. 41, no. 6, pp. 2625–2627, 2009.
[8]  J. D. Hosenpud, E. B. Edwards, H. M. Lin, and O. P. Daily, “Influence of HLA matching on thoracic transplant outcomes: an analysis from the UNOS/ISHLT thoracic registry,” Circulation, vol. 94, no. 2, pp. 170–174, 1996.
[9]  G. Opelz, T. Wujciak, B. D?hler, S. Scherer, and J. Mytilineos, “HLA compatibility and organ transplant survival. Collaborative Transplant Study,” Reviews in immunogenetics, vol. 1, no. 3, pp. 334–342, 1999.
[10]  I. Kaczmarek, M. A. Deutsch, M. E. Rohrer et al., “HLA-DR matching improves survival after heart transplantation: is it time to change allocation policies?” Journal of Heart and Lung Transplantation, vol. 25, no. 9, pp. 1057–1062, 2006.
[11]  J. Jimenez, S. R. Kapadia, M. H. Yamani et al., “Cellular rejection and rate of progression of transplant vasculopathy: a 3-year serial intravascular ultrasound study,” Journal of Heart and Lung Transplantation, vol. 20, no. 4, pp. 393–398, 2001.
[12]  M. H. Yamani, M. Yousufuddin, R. C. Starling et al., “Does acute cellular rejection correlate with cardiac allograft vasculopathy?” Journal of Heart and Lung Transplantation, vol. 23, no. 3, pp. 272–276, 2004.
[13]  H. P. Brunner-La Rocca, J. Schneider, A. Künzli, M. Turina, and W. Kiowski, “Cardiac allograft rejection late after transplantation is a risk factor for graft coronary artery disease,” Transplantation, vol. 65, no. 4, pp. 538–543, 1998.
[14]  M. Dandel, M. Hummel, E. Wellnhofer, S. Kapell, H. B. Lehmkuhl, and R. Hetzer, “Association between acute rejection and cardiac allograft vasculopathy,” Journal of Heart and Lung Transplantation, vol. 22, no. 9, pp. 1064–1065, 2003.
[15]  T. M. Millington and J. C. Madsen, “Innate immunity in heart transplantation,” Current Opinion in Organ Transplantation, vol. 14, no. 5, pp. 571–576, 2009.
[16]  A. Gareau, G. M. Hirsch, T. D. G. Lee, and B. Nashan, “Contribution of b cells and antibody to cardiac allograft vasculopathy,” Transplantation, vol. 88, no. 4, pp. 470–477, 2009.
[17]  M. Tanaka, G. K. Mokhtari, R. D. Terry et al., “Prolonged cold ischemia in rat cardiac allografts promotes ischemia-reperfusion injury and the development of graft coronary artery disease in a linear fashion,” Journal of Heart and Lung Transplantation, vol. 24, no. 11, pp. 1906–1914, 2005.
[18]  S. Schneeberger, A. Amberger, J. Mandl et al., “Cold ischemia contributes to the development of chronic rejection and mitochondrial injury after cardiac transplantation,” Transplant International, vol. 23, no. 12, pp. 1282–1292, 2010.
[19]  P. B. Gaudin, B. K. Rayburn, G. M. Hutchins et al., “Peritransplant injury to the myocardium associated with the development of accelerated arteriosclerosis in heart transplant recipients,” American Journal of Surgical Pathology, vol. 18, no. 4, pp. 338–346, 1994.
[20]  S. Ramjug, N. Hussain, and N. Yonan, “Prolonged time between donor brain death and organ retrieval results in an increased risk of mortality in cardiac transplant recipients,” Interactive Cardiovascular and Thoracic Surgery, vol. 12, no. 6, pp. 938–942, 2011.
[21]  R. Tuuminen, S. Syrj?l?, R. Krebs et al., “Donor simvastatin treatment abolishes rat cardiac allograft ischemia/reperfusion injury and chronic rejection through microvascular protection,” Circulation, vol. 124, no. 10, pp. 1138–1150, 2011.
[22]  D. J. Kaczorowski, A. Nakao, R. Vallabhaneni et al., “Mechanisms of toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart,” Transplantation, vol. 87, no. 10, pp. 1455–1463, 2009.
[23]  F. Arslan, M. B. Smeets, L. A. J. O'Neill et al., “Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody,” Circulation, vol. 121, no. 1, pp. 80–90, 2010.
[24]  F. J. Van Der Woude, P. Schnuelle, and B. A. Yard, “Preconditioning strategies to limit graft immunogenicity and cold ischemic organ injury,” Journal of Investigative Medicine, vol. 52, no. 5, pp. 323–329, 2004.
[25]  J. Lutz, K. Thürmel, and U. Heemann, “Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation,” Journal of Inflammation, vol. 7, article 27, 2010.
[26]  K. A. Reimer, J. E. Lowe, M. M. Rasmussen, and R. B. Jennings, “The wavefront phenomenon of ischemic cell death—1. Myocardial infarct size vs duration of coronary occlusion in dogs,” Circulation, vol. 56, no. 5, pp. 786–794, 1977.
[27]  P. R. Maroko, P. Libby, W. R. Ginks et al., “Coronary artery reperfusion—I. Early effects on local myocardial function and the extent of myocardial necrosis,” Journal of Clinical Investigation, vol. 51, no. 10, pp. 2710–2716, 1972.
[28]  R. B. Jennings, H. M. Sommers, G. A. Smyth, H. A. Flack, and H. Linn, “Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog,” Archives of Pathology, vol. 70, pp. 68–78, 1960.
[29]  D. M. Yellon and D. J. Hausenloy, “Myocardial reperfusion injury,” New England Journal of Medicine, vol. 357, no. 11, pp. 1121–1135, 2007.
[30]  P. Ferdinandy, R. Schulz, and G. F. Baxter, “Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning,” Pharmacological Reviews, vol. 59, no. 4, pp. 418–458, 2007.
[31]  K. Boengler, G. Heusch, and R. Schulz, “Nuclear-encoded mitochondrial proteins and their role in cardioprotection,” Biochimica et Biophysica Acta, vol. 1813, no. 7, pp. 1286–1294, 2011.
[32]  E. Murphy and C. Steenbergen, “What makes the mitochondria a killer? Can we condition them to be less destructive?” Biochimica et Biophysica Acta, vol. 1813, no. 7, pp. 1302–1308, 2011.
[33]  D. R. Meldrum, C. A. Dinarello, J. C. Cleveland et al., “Hydrogen peroxide induces tumor necrosis factor α-mediated cardiac injury by a P38 mitogen-activated protein kinase-dependent mechanism,” Surgery, vol. 124, no. 2, pp. 291–297, 1998.
[34]  D. Ishii, A. D. Schenk, S. Baba, and R. L. Fairchild, “Role of TNFα in early chemokine production and leukocyte infiltration into heart allografts,” American Journal of Transplantation, vol. 10, no. 1, pp. 59–68, 2010.
[35]  J. E. Jordan, Z. Q. Zhao, and J. Vinten-Johansen, “The role of neutrophils in myocardial ischemia-reperfusion injury,” Cardiovascular Research, vol. 43, no. 4, pp. 860–878, 1999.
[36]  K. Morita, M. Miura, D. R. Paolone et al., “Early chemokine cascades in murine cardiac grafts regulate T cell recruitment and progression of acute allograft rejection,” Journal of Immunology, vol. 167, no. 5, pp. 2979–2984, 2001.
[37]  T. El-Sawy, M. Miura, and R. Fairchild, “Early T cell response to allografts occuring prior to alloantigen priming up-regulates innate-mediated inflammation and graft necrosis,” American Journal of Pathology, vol. 165, no. 1, pp. 147–157, 2004.
[38]  B. Mikalsen, B. Fosby, J. Wang et al., “Genome-wide transcription profile of endothelial cells after cardiac transplantation in the rat,” American Journal of Transplantation, vol. 10, no. 7, pp. 1534–1544, 2010.
[39]  G. M. P. Diepenhorst, T. M. Van Gulik, and C. E. Hack, “Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies,” Annals of Surgery, vol. 249, no. 6, pp. 889–899, 2009.
[40]  C. Widmann, S. Gibson, M. B. Jarpe, and G. L. Johnson, “Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human,” Physiological Reviews, vol. 79, no. 1, pp. 143–180, 1999.
[41]  N. Gerits, S. Kostenko, and U. Moens, “In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice,” Transgenic Research, vol. 16, no. 3, pp. 281–314, 2007.
[42]  T. G. Boulton, G. D. Yancopoulos, J. S. Gregory et al., “An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control,” Science, vol. 249, no. 4964, pp. 64–67, 1990.
[43]  G. Milano, S. Morel, C. Bonny et al., “A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo,” American Journal of Physiology, vol. 292, no. 4, pp. H1828–H1835, 2007.
[44]  T. L. Yue, C. Wang, J. L. Gu et al., “Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart,” Circulation Research, vol. 86, no. 6, pp. 692–699, 2000.
[45]  D. J. Lips, O. F. Bueno, B. J. Wilkins et al., “MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo,” Circulation, vol. 109, no. 16, pp. 1938–1941, 2004.
[46]  A. Das, F. N. Salloum, L. Xi, Y. J. Rao, and R. C. Kukreja, “ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice,” American Journal of Physiology, vol. 296, no. 5, pp. H1236–H1243, 2009.
[47]  X. Yang, Y. Liu, X.-M. Yang et al., “Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity,” Basic Research in Cardiology, vol. 106, no. 3, pp. 421–430, 2011.
[48]  D. J. Hausenloy and D. M. Yellon, “New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway,” Cardiovascular Research, vol. 61, no. 3, pp. 448–460, 2004.
[49]  J. M. Kyriakis, P. Banerjee, E. Nikolakaki et al., “The stress-activated protein kinase subfamily of c-jun kinases,” Nature, vol. 369, no. 6476, pp. 156–160, 1994.
[50]  P. Ping, J. Zhang, S. Huang et al., “PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits,” American Journal of Physiology, vol. 277, no. 5, pp. H1771–H1785, 1999.
[51]  N. Shimizu, M. Yoshiyama, T. Omura et al., “Activation of mitogen-activated protein kinases and activator protein- 1 in myocardial infarction in rats,” Cardiovascular Research, vol. 38, no. 1, pp. 116–124, 1998.
[52]  R. J. Knight and D. B. Buxton, “Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart,” Biochemical and Biophysical Research Communications, vol. 218, no. 1, pp. 83–88, 1996.
[53]  Y. Mizukami, K. Yoshioka, S. Morimoto, and K. I. Yoshida, “A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion,” Journal of Biological Chemistry, vol. 272, no. 26, pp. 16657–16662, 1997.
[54]  T. Yin, G. Sandhu, C. D. Wolfgang et al., “Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney,” Journal of Biological Chemistry, vol. 272, no. 32, pp. 19943–19950, 1997.
[55]  R. M. Fryer, H. H. Patel, A. K. Hsu, and G. J. Gross, “Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium,” American Journal of Physiology, vol. 281, no. 3, pp. H1184–H1192, 2001.
[56]  Z. Shao, K. Bhattacharya, E. Hsich et al., “c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo,” Circulation Research, vol. 98, no. 1, pp. 111–118, 2006.
[57]  P. Andreka, J. Zang, C. Dougherty, T. I. Slepak, K. A. Webster, and N. H. Bishopric, “Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis,” Circulation Research, vol. 88, no. 3, pp. 305–312, 2001.
[58]  C. J. Dougherty, L. A. Kubasiak, H. Prentice, P. Andreka, N. H. Bishopric, and K. A. Webster, “Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress,” Biochemical Journal, vol. 362, no. 3, pp. 561–571, 2002.
[59]  A. M. Engelbrecht, C. Niesler, C. Page, and A. Lochner, “p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes,” Basic Research in Cardiology, vol. 99, no. 5, pp. 338–350, 2004.
[60]  H. Aoki, P. M. Kang, J. Hampe et al., “Direct activation of mitochondrial apoptosis machinery by c-Jun n-terminal kinase in adult cardiac myocytes,” Journal of Biological Chemistry, vol. 277, no. 12, pp. 10244–10250, 2002.
[61]  D. Hreniuk, M. Garay, W. Gaarde, B. P. Monia, R. A. Mckay, and C. L. Cioffi, “Inhibition of C-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes,” Molecular Pharmacology, vol. 59, no. 4, pp. 867–874, 2001.
[62]  W. G. Li, L. Coppey, R. M. Weiss, and H. J. Oskarsson, “Antioxidant therapy attenuates JNK activation and apoptosis in the remote noninfarcted myocardium after large myocardial infarction,” Biochemical and Biophysical Research Communications, vol. 280, no. 1, pp. 353–357, 2001.
[63]  S. H. Kwon, D. R. Pimentel, A. Remondino, D. B. Sawyer, and W. S. Colucci, “H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 6, pp. 615–621, 2003.
[64]  A. Remondino, S. H. Kwon, C. Communal et al., “β-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway,” Circulation Research, vol. 92, no. 2, pp. 136–138, 2003.
[65]  R. A. Kaiser, Q. Liang, O. Bueno et al., “Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia-reperfusion-induced cell death in vivo,” Journal of Biological Chemistry, vol. 280, no. 38, pp. 32602–32608, 2005.
[66]  Y. R. Chen and T. H. Tan, “Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin,” Oncogene, vol. 17, no. 2, pp. 173–178, 1998.
[67]  T. Borsellol, P. G. H. Clarkel, L. Hirt et al., “A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia,” Nature Medicine, vol. 9, no. 9, pp. 1180–1186, 2003.
[68]  C. Steenbergen, “The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; Relationship to ischemic preconditioning,” Basic Research in Cardiology, vol. 97, no. 4, pp. 276–285, 2002.
[69]  P. Ping and E. Murphy, “Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase?” Circulation Research, vol. 86, no. 9, pp. 921–922, 2000.
[70]  R. Bassi, R. Heads, M. S. Marber, and J. E. Clark, “Targeting p38-MAPK in the ischaemic heart: kill or cure?” Current Opinion in Pharmacology, vol. 8, no. 2, pp. 141–146, 2008.
[71]  D. Kumar, V. Menon, W. R. Ford, A. S. Clanachan, and B. I. Jugdutt, “Effect of angiotensin II type 2 receptor blockade on mitogen activated protein kinase during myocardial ischemia-reperfusion,” Molecular and Cellular Biochemistry, vol. 258, no. 1-2, pp. 211–218, 2004.
[72]  J. S. Jaswal, M. Gandhi, B. A. Finegan, J. R. B. Dyck, and A. S. Clanachan, “Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization,” American Journal of Physiology, vol. 293, no. 2, pp. H1107–H1114, 2007.
[73]  W. Chai, Y. Wu, G. Li, W. Cao, Z. Yang, and Z. Liu, “Activation of p38 mitogen-activated protein kinase abolishes insulin-mediated myocardial protection against ischemia-reperfusion injury,” American Journal of Physiology-Endocrinology and Metabolism, vol. 294, no. 1, pp. E183–E189, 2008.
[74]  F. Gao, T. L. Yue, D. W. Shi et al., “p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation,” Cardiovascular Research, vol. 53, no. 2, pp. 414–422, 2002.
[75]  R. A. Kaiser, O. F. Bueno, D. J. Lips et al., “Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo,” Journal of Biological Chemistry, vol. 279, no. 15, pp. 15524–15530, 2004.
[76]  C. E. Murry, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, vol. 74, no. 5, pp. 1124–1136, 1986.
[77]  A. Granfeldt, D. J. Lefer, and J. Vinten-Johansen, “Protective ischaemia in patients: preconditioning and postconditioning,” Cardiovascular Research, vol. 83, no. 2, pp. 234–246, 2009.
[78]  T. Kuzuya, S. Hoshida, N. Yamashita et al., “Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia,” Circulation Research, vol. 72, no. 6, pp. 1293–1299, 1993.
[79]  M. S. Marber, D. S. Latchman, J. M. Walker, and D. M. Yellon, “Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction,” Circulation, vol. 88, no. 3, pp. 1264–1272, 1993.
[80]  R. Bolli, Q. H. Li, X. L. Tang et al., “The late phase of preconditioning and its natural clinical application—gene therapy,” Heart Failure Reviews, vol. 12, no. 3-4, pp. 189–199, 2007.
[81]  C. A. Piot, D. Padmanaban, P. C. Ursell, R. E. Sievers, and C. L. Wolfe, “Ischemic preconditioning decreases apoptosis in rat hearts in vivo,” Circulation, vol. 96, no. 5, pp. 1598–1604, 1997.
[82]  R. M. Fryer, P. F. Pratt, A. K. Hsu, and G. J. Gross, “Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection,” Journal of Pharmacology and Experimental Therapeutics, vol. 296, no. 2, pp. 642–649, 2001.
[83]  R. Da Silva, T. Grampp, T. Pasch, M. C. Schaub, and M. Zaugg, “Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning,” Anesthesiology, vol. 100, no. 1, pp. 59–69, 2004.
[84]  R. Bolli, “Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 11, pp. 1897–1918, 2001.
[85]  D. J. Hausenloy, A. Tsang, M. M. Mocanu, and D. M. Yellon, “Ischemic preconditioning protects by activating prosurvival kinases at reperfusion,” American Journal of Physiology, vol. 288, no. 2, pp. H971–H976, 2005.
[86]  D. J. Hausenloy and D. M. Yellon, “Survival kinases in ischemic preconditioning and postconditioning,” Cardiovascular Research, vol. 70, no. 2, pp. 240–253, 2006.
[87]  P. Ferdinandy and R. Schulz, “Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning,” British Journal of Pharmacology, vol. 138, no. 4, pp. 532–543, 2003.
[88]  Y. Liu, K. Ytrehus, and J. M. Downey, “Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium,” Journal of Molecular and Cellular Cardiology, vol. 26, no. 5, pp. 661–668, 1994.
[89]  D. R. Meldrum, J. C. Cleveland, X. Meng et al., “Protein kinase C isoform diversity in preconditioning,” Journal of Surgical Research, vol. 69, no. 1, pp. 183–187, 1997.
[90]  H. Tong, W. Chen, C. Steenbergen, and E. Murphy, “Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C,” Circulation Research, vol. 87, no. 4, pp. 309–315, 2000.
[91]  M. M. Mocanu, R. M. Bell, and D. M. Yellon, “PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 6, pp. 661–668, 2002.
[92]  C. Vahlhaus, R. Schulz, H. Post, J. Rose, and G. Heusch, “Prevention of ischemic preconditioning only by combined inhibition of protein kinase C and protein tyrosine kinase in pigs,” Journal of Molecular and Cellular Cardiology, vol. 30, no. 2, pp. 197–209, 1998.
[93]  O. Oldenburg, S. D. Critz, M. V. Cohen, and J. M. Downey, “Acetylcholine-induced production of reactive oxygen species in adult rabbit ventricular myocytes is dependent on phosphatidylinositol 3- and Src-kinase activation and mitochondrial KATP channel opening,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 6, pp. 653–660, 2003.
[94]  R. Hattori, N. Maulik, H. Otani et al., “Role of STAT3 in ischemic preconditioning,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 11, pp. 1929–1936, 2001.
[95]  S. P. Barry, P. A. Townsend, D. S. Latchman, and A. Stephanou, “Role of the JAK-STAT pathway in myocardial injury,” Trends in Molecular Medicine, vol. 13, no. 2, pp. 82–89, 2007.
[96]  M. Juhaszova, D. B. Zorov, S. H. Kim et al., “Glycogen synthase kinase-3β mediates convergence of protection signalling to inhibit the mitochondrial permeability transition pore,” Journal of Clinical Investigation, vol. 113, no. 11, pp. 1535–1549, 2004.
[97]  S. J. Clarke, I. Khaliulin, M. Das, J. E. Parker, K. J. Heesom, and A. P. Halestrap, “Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation,” Circulation Research, vol. 102, no. 9, pp. 1082–1090, 2008.
[98]  P. Ping, J. Zhang, X. Cao et al., “PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia- reperfusion in conscious rabbits,” American Journal of Physiology, vol. 276, no. 5, pp. H1468–H1481, 1999.
[99]  C. Strohm, M. Barancik, M. L. V. Brühl, S. A. R. Kilian, and W. Schaper, “Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium,” Journal of Cardiovascular Pharmacology, vol. 36, no. 2, pp. 218–229, 2000.
[100]  C. Strohm, M. Barancík, M. L. Von Bruehl et al., “Transcription inhibitor actinomycin-D abolishes the cardioprotective effect of ischemic reconditioning,” Cardiovascular Research, vol. 55, no. 3, pp. 602–618, 2002.
[101]  R. C. X. Li, P. Ping, J. Zhang et al., “PKCε modulates NF-κB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes,” American Journal of Physiology, vol. 279, no. 4, pp. H1679–H1689, 2000.
[102]  L. Button, S. E. Mireylees, R. Germack, and J. M. Dickenson, “Phosphatidylinositol 3-kinase and ERK1/2 are not involved in adenosine A1, A2A or A3 receptor-mediated preconditioning in rat ventricle strips,” Experimental Physiology, vol. 90, no. 5, pp. 747–754, 2005.
[103]  N. V. Solenkova, V. Solodushko, M. V. Cohen, and J. M. Downey, “Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt,” American Journal of Physiology, vol. 290, no. 1, pp. H441–H449, 2006.
[104]  X. Liu, X. Wu, L. Cai, C. Tang, and J. Su, “Hypoxic preconditioning of cardiomyocytes and cardioprotection: phophorylation of HIF-1α induced by p42/p44 mitogen-activated protein kinases is involved,” Pathophysiology, vol. 9, no. 4, pp. 201–205, 2003.
[105]  K. Z. Gong, Z. G. Zhang, A. H. Li et al., “ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes,” Chinese Medical Journal, vol. 117, no. 3, pp. 395–400, 2004.
[106]  E. A. Reid, G. Kristo, Y. Yoshimura et al., “In vivo adenosine receptor preconditioning reduces myocardial infarct size via subcellular ERK signaling,” American Journal of Physiology, vol. 288, no. 5, pp. H2253–H2259, 2005.
[107]  R. D. Lasley, B. J. Keith, G. Kristo, Y. Yoshimura, and R. M. Mentzer Jr., “Delayed adenosine A1 receptor preconditioning in rat myocardium is MAPK dependent but iNOS independent,” American Journal of Physiology, vol. 289, no. 2, pp. H785–H791, 2005.
[108]  O. Toma, N. C. Weber, J. I. Wolter, D. Obal, B. Preckel, and W. Schlack, “Desflurane preconditioning induces time-dependent activation of protein kinase C epsilon and extracellular signal-regulated kinase 1 and 2 in the rat heart in vivo,” Anesthesiology, vol. 101, no. 6, pp. 1372–1380, 2004.
[109]  A. Punn, J. W. Mockridge, S. Farooqui, M. S. Marber, and R. J. Heads, “Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes,” Biochemical Journal, vol. 350, no. 3, pp. 891–899, 2000.
[110]  R. M. Fryer, A. K. Hsu, and G. J. Gross, “ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection,” Basic Research in Cardiology, vol. 96, no. 2, pp. 136–142, 2001.
[111]  L. Samavati, M. M. Monick, S. Sanlioglu, G. R. Buettner, L. W. Oberley, and G. W. Hunninghake, “Mitochondrial KATP channel openers activate the ERK kinase by an oxidant-dependent mechanism,” American Journal of Physiology, vol. 283, no. 1, pp. C273–C281, 2002.
[112]  J. W. Mockridge, A. Punn, D. S. Latchman, M. S. Marber, and R. J. Heads, “PKC-dependent delayed metabolic preconditioning is independent of transient MAPK activation,” American Journal of Physiology, vol. 279, no. 2, pp. H492–H501, 2000.
[113]  Y. Takeishi, Q. Huang, T. Wang et al., “Src family kinase and adenosine differentially regulate multiple MAP kinases in ischemic myocardium: modulation of MAP kinases activation by ischemic preconditioning,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 11, pp. 1989–2005, 2001.
[114]  S. O. Kim, C. P. Baines, S. D. Critz et al., “Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart,” Biochemistry and Cell Biology, vol. 77, no. 6, pp. 559–567, 1999.
[115]  S. E. A. Haq, A. Clerk, and P. H. Sugden, “Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart,” FEBS Letters, vol. 434, no. 3, pp. 305–308, 1998.
[116]  M. Sato, G. A. Cordis, N. Maulik, and D. K. Das, “SAPKs regulation of ischemic preconditioning,” American Journal of Physiology, vol. 279, no. 3, pp. H901–H907, 2000.
[117]  M. Behrends, R. Schulz, H. Post et al., “Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs,” American Journal of Physiology, vol. 279, no. 3, pp. H1111–H1119, 2000.
[118]  E. K. Iliodromitis, C. Gaitanaki, A. Lazou et al., “Dissociation of stress-activated protein kinase (p38-MAPK and JNKs) phosphorylation from the protective effect of preconditioning in vivo,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 8, pp. 1019–1028, 2002.
[119]  Z. Gu, Q. Jiang, and G. Zhang, “Extracellular signal-regulated kinase and c-Jun N-terminal protein kinase in ischemic tolerance,” NeuroReport, vol. 12, no. 16, pp. 3487–3491, 2001.
[120]  D. Crenesse, M. Laurens, J. Gugenheim et al., “Intermittent ischemia reduces warm hypoxia-reoxygenation-induced JNK1/SAPK1 activation and apoptosis in rat hepatocytes,” Hepatology, vol. 34, no. 5, pp. 972–978, 2001.
[121]  K. M. Park, A. Chen, and J. V. Bonventre, “Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment,” Journal of Biological Chemistry, vol. 276, no. 15, pp. 11870–11876, 2001.
[122]  A. Nakano, C. P. Baines, S. O. Kim et al., “Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK,” Circulation Research, vol. 86, no. 2, pp. 144–151, 2000.
[123]  K. Sakamoto, T. Urushidani, and T. Nagao, “Translocation of HSP27 to sarcomere induced by ischemic preconditioning in isolated rat hearts,” Biochemical and Biophysical Research Communications, vol. 269, no. 1, pp. 137–142, 2000.
[124]  P. Eaton, W. Fuller, J. R. Bell, and M. J. Shattock, “αB crystallin translocation and phosphorylation: signal transduction pathways and preconditioning in the isolated rat heart,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 9, pp. 1659–1671, 2001.
[125]  S. Sanada, M. Kitakaze, P. J. Papst et al., “Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischemic preconditioning of the canine heart,” Circulation Research, vol. 88, no. 2, pp. 175–180, 2001.
[126]  E. Marais, S. Genade, B. Huisamen, J. G. Strijdom, J. A. Moolman, and A. Lochner, “Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 4, pp. 769–778, 2001.
[127]  R. Schulz, S. Belosjorow, P. Gres, J. Jansen, M. C. Michel, and G. Heusch, “p38 MAP kinase is a mediator of ischemic preconditioning in pigs,” Cardiovascular Research, vol. 55, no. 3, pp. 690–700, 2002.
[128]  R. Schulz, P. Gres, A. Skyschally et al., “Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo,” The FASEB Journal, vol. 17, no. 10, pp. 1355–1357, 2003.
[129]  Y. Nakamura, T. Miura, A. Nakano et al., “Role of microtubules in ischemic preconditioning against myocardial infarction,” Cardiovascular Research, vol. 64, no. 2, pp. 322–330, 2004.
[130]  E. Marais, S. Genade, R. Salie et al., “The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning,” Basic Research in Cardiology, vol. 100, no. 1, pp. 35–47, 2005.
[131]  C. Ballard-Croft, G. Kristo, Y. Yoshimura et al., “Acute adenosine preconditioning is mediated by p38 MAPK activation in discrete subcellular compartments,” American Journal of Physiology, vol. 288, no. 3, pp. H1359–H1366, 2005.
[132]  J. A. Moolman, S. Hartley, J. Van Wyk, E. Marais, and A. Lochner, “Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38 MAPK,” Cardiovascular Drugs and Therapy, vol. 20, no. 1, pp. 13–25, 2006.
[133]  C. Weinbrenner, G. S. Liu, M. V. Cohen, and J. M. Downey, “Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart,” Journal of Molecular and Cellular Cardiology, vol. 29, no. 9, pp. 2383–2391, 1997.
[134]  N. Maulik, M. Sato, B. D. Price, and D. K. Das, “An essential role of NFκB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia,” FEBS Letters, vol. 429, no. 3, pp. 365–369, 1998.
[135]  N. Maulik, T. Yoshida, Y. L. Zu, M. Sato, A. Banerjee, and D. K. Das, “Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for MAPKAP kinase 2,” American Journal of Physiology, vol. 275, no. 5, pp. H1857–H1864, 1998.
[136]  S. C. Armstrong, M. Delacey, and C. E. Ganote, “Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 31, no. 3, pp. 555–567, 1999.
[137]  M. Loubani and M. Gali?anes, “Pharmacological and ischemic preconditioning of the human myocardium: mitoK(ATP) channels are upstream and p38MAPK is downstream of PKC,” BMC Physiology, vol. 2, no. 1, article 10, p. 10, 2002.
[138]  M. Loubani, A. Hassouna, and M. Gali?anes, “Delayed preconditioning of the human myocardium: signal transduction and clinical implications,” Cardiovascular Research, vol. 61, no. 3, pp. 600–609, 2004.
[139]  A. Lochner, E. Marais, E. D. U. Toit, and J. Moolman, “Nitric oxide triggers classic ischemic preconditioning,” Annals of the New York Academy of Sciences, vol. 962, pp. 402–414, 2002.
[140]  S. Kimura, G. X. Zhang, A. Nishiyama et al., “Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II,” Hypertension, vol. 45, no. 5, pp. 860–866, 2005.
[141]  D. S. Nagarkatti and R. I. Sha'afi, “Role of p38 MAP kinase in myocardial stress,” Journal of Molecular and Cellular Cardiology, vol. 30, no. 8, pp. 1651–1664, 1998.
[142]  A. Dana, M. Skarli, J. Papakrivopoulou, and D. M. Yellon, “Adenosine A1 receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism,” Circulation Research, vol. 86, no. 9, pp. 989–997, 2000.
[143]  T. C. Zhao, D. S. Hines, and R. C. Kukreja, “Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial KATP channels,” American Journal of Physiology, vol. 280, no. 3, pp. H1278–H1285, 2001.
[144]  M. M. Mocanu, G. F. Baxter, Y. Yue, S. D. Critz, and D. M. Yellon, “The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical,” Basic Research in Cardiology, vol. 95, no. 6, pp. 472–478, 2000.
[145]  P. Sicard, J. E. Clark, S. Jacquet et al., “The activation of p38alpha, and not p38beta, mitogen-activated protein kinase is required for ischemic preconditioning,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 6, pp. 1324–1328, 2010.
[146]  J. Rouse, P. Cohen, S. Trigon et al., “A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins,” Cell, vol. 78, no. 6, pp. 1027–1037, 1994.
[147]  G. Li, I. S. Ali, and R. W. Currie, “Insulin-induced myocardial protection in isolated ischemic rat hearts requires p38 MAPK phosphorylation of Hsp27,” American Journal of Physiology, vol. 294, no. 1, pp. H74–H87, 2008.
[148]  R. T. Clements, J. Feng, B. Cordeiro, C. Bianchi, and F. W. Sellke, “P38 MAPK-dependent small HSP27 and αB-crystallin phosphorylation in regulation of myocardial function following cardioplegic arrest,” American Journal of Physiology, vol. 300, no. 5, pp. H1669–H1677, 2011.
[149]  M. Barancik, P. Htun, C. Strohm, S. Kilian, and W. Schaper, “Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death,” Journal of Cardiovascular Pharmacology, vol. 35, no. 3, pp. 474–483, 2000.
[150]  A. Gysembergh, B. Z. Simkhovich, R. A. Kloner, and K. Przyklenk, “p38 MAPK activity is not increased early during sustained coronary artery occlusion in preconditioned versus control rabbit heart,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 4, pp. 681–690, 2001.
[151]  S. Schneider, W. Chen, J. Hou, C. Steenbergen, and E. Murphy, “Inhibition of p38 MAPK α/β reduces ischemic injury and does not block protective effects of preconditioning,” American Journal of Physiology, vol. 280, no. 2, pp. H499–H508, 2001.
[152]  A. Lochner, S. Genade, S. Hattingh, E. Marais, B. Huisamen, and J. A. Moolman, “Comparison between Ischaemic and Anisomycin-Induced Preconditioning: role of p38 MAPK,” Cardiovascular Drugs and Therapy, vol. 17, no. 3, pp. 217–230, 2003.
[153]  A. T. Saurin, J. L. Martin, R. J. Heads et al., “The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes,” FASEB Journal, vol. 14, no. 14, pp. 2237–2246, 2000.
[154]  R. D. Rakhit, A. N. M. Kabir, J. W. Mockridge, A. Saurin, and M. S. Marber, “Role of G proteins and modulation of p38 MAPK activation in the protection by nitric oxide against ischemia-reoxygenation injury,” Biochemical and Biophysical Research Communications, vol. 286, no. 5, pp. 995–1002, 2001.
[155]  K. Mackay and D. Mochly-Rosen, “An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia,” Journal of Biological Chemistry, vol. 274, no. 10, pp. 6272–6279, 1999.
[156]  X. L. Ma, S. Kumar, F. Gao et al., “Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion,” Circulation, vol. 99, no. 13, pp. 1685–1691, 1999.
[157]  S. Nemoto, J. Xiang, S. Huang, and A. Lin, “Induction of apoptosis by SB202190 through inhibition of p38β mitogen- activated protein kinase,” Journal of Biological Chemistry, vol. 273, no. 26, pp. 16415–16420, 1998.
[158]  Z. Li, Y. M. Jing, I. Kerr et al., “Selective inhibition of p38α MAPK improves cardiac function and reduces myocardial apoptosis in rat model of myocardial injury,” American Journal of Physiology, vol. 291, no. 4, pp. H1972–H1977, 2006.
[159]  S. Kumphune, R. Bassi, S. Jacquet, et al., “A chemical genetic approach reveals that p38alpha MAPK activation by diphosphorylation aggravates myocardial infarction and is prevented by the direct binding of SB203580,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 5, pp. 972–980, 2007.
[160]  P. Liao, S. Q. Wang, S. Wang et al., “p38 mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes,” Circulation Research, vol. 90, no. 2, pp. 190–196, 2002.
[161]  F. Chen, H. Kan, G. Hobbs, and M. S. Finkel, “P38 MAP kinase inhibitor reverses stress-induced myocardial dysfunction in vivo,” Journal of Applied Physiology, vol. 106, no. 4, pp. 1132–1141, 2009.
[162]  I. Szokodi, R. Kerkel?, A. M. Kubin et al., “Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility,” Circulation, vol. 118, no. 16, pp. 1651–1658, 2008.
[163]  T. H. Chao, M. Hayashi, R. I. Tapping, Y. Kato, and J. D. Lee, “MEKK3 directly regulates MEK5 activity as part of the big mitogen- activated protein kinase 1 (BMK1) signaling pathway,” Journal of Biological Chemistry, vol. 274, no. 51, pp. 36035–36038, 1999.
[164]  Y. Takeishi, J. I. Abe, J. D. Lee, H. Kawakatsu, R. A. Walsh, and B. C. Berk, “Differential regulation of p90 ribosomal S6 kinase and big mitogen- activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts,” Circulation Research, vol. 85, no. 12, pp. 1164–1172, 1999.
[165]  S. J. Cameron, S. Itoh, C. P. Baines et al., “Activation of big MAP kinase 1 (BMK1/ERK5) inhibits cardiac injury after myocardial ischemia and reperfusion,” FEBS Letters, vol. 566, no. 1–3, pp. 255–260, 2004.
[166]  X. Pi, C. Yan, and B. C. Berk, “Big Mitogen-Activated Protein Kinase (BMK1)/ERK5 protects endothelial cells from apoptosis,” Circulation Research, vol. 94, no. 3, pp. 362–369, 2004.
[167]  C. Yan, B. Ding, T. Shishido et al., “Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop,” Circulation Research, vol. 100, no. 4, pp. 510–519, 2007.
[168]  S. H. Qi, Q. H. Guan, M. Wang, and G. Y. Zhang, “Action of ERK5 in ischemic tolerance suggests its probable participation in the signaling mechanism ERK5 in the signaling mechanism S.-H. Qi et al,” Journal of Receptors and Signal Transduction, vol. 29, no. 1, pp. 38–43, 2009.
[169]  R. M. Wang, Q. G. Zhang, J. Li, L. C. Yang, F. Yang, and D. W. Brann, “The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats,” Brain Research, vol. 1255, pp. 32–41, 2009.
[170]  D. J. Hausenloy and D. M. Yellon, “Remote ischaemic preconditioning: underlying mechanisms and clinical application,” Cardiovascular Research, vol. 79, no. 3, pp. 377–386, 2008.
[171]  K. Przyklenk, C. E. Darling, E. W. Dickson, and P. Whittaker, “Cardioprotection “outside the box”: the evolving paradigm of remote preconditioning,” Basic Research in Cardiology, vol. 98, no. 3, pp. 149–157, 2003.
[172]  B. C. G. Gho, R. G. Schoemaker, M. A. Van den Doel, D. J. Duncker, and P. D. Verdouw, “Myocardial protection by brief ischemia in noncardiac tissue,” Circulation, vol. 94, no. 9, pp. 2193–2200, 1996.
[173]  R. K. Kharbanda, U. M. Mortensen, P. A. White et al., “Transient limb ischemia induces remote ischemic preconditioning in vivo,” Circulation, vol. 106, no. 23, pp. 2881–2883, 2002.
[174]  M. Heidbreder, A. Naumann, K. Tempel, P. Dominiak, and A. Dendorfer, “Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways,” Cardiovascular Research, vol. 78, no. 1, pp. 108–115, 2008.
[175]  S. Wolfrum, K. Schneider, M. Heidbreder, J. Nienstedt, P. Dominiak, and A. Dendorfer, “Remote preconditioning protects the heart by activating myocardial PKCε-isoform,” Cardiovascular Research, vol. 55, no. 3, pp. 583–589, 2002.
[176]  R. G. Schoemaker and C. L. van Heijningen, “Bradykinin mediates cardiac preconditioning at a distance,” American Journal of Physiology, vol. 278, no. 5, pp. H1571–H1576, 2000.
[177]  Z.-Q. Zhao, J. S. Corvera, M. E. Halkos et al., “Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning,” American Journal of Physiology, vol. 285, no. 2 54-2, pp. H579–H588, 2003.
[178]  Z. Q. Zhao, J. S. Corvera, M. E. Halkos et al., “Erratum: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning,” American Journal of Physiology, vol. 286, no. 1, p. H477, 2004.
[179]  G. Valen and J. Vaage, “Pre- and postconditioning during cardiac surgery,” Basic Research in Cardiology, vol. 100, no. 3, pp. 179–186, 2005.
[180]  D. M. Yellon and L. H. Opie, “Postconditioning for protection of the infarcting heart,” Lancet, vol. 367, no. 9509, pp. 456–458, 2006.
[181]  M. Ovize, G. F. Baxter, F. Di Lisa et al., “Postconditioning and protection from reperfusion injury: where do we stand: position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology,” Cardiovascular Research, vol. 87, no. 3, pp. 406–423, 2010.
[182]  A. Tsang, D. J. Hausenloy, M. M. Mocanu, and D. M. Yellon, “Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway,” Circulation Research, vol. 95, no. 3, pp. 230–232, 2004.
[183]  C. E. Darling, K. Jiang, M. Maynard, P. Whittaker, J. Vinten-Johansen, and K. Przyklenk, “Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2,” American Journal of Physiology, vol. 289, no. 4, pp. H1618–H1626, 2005.
[184]  E. K. Iliodromitis, M. Georgiadis, M. V. Cohen, J. M. Downey, E. Bofilis, and D. T. Kremastinos, “Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs,” Basic Research in Cardiology, vol. 101, no. 6, pp. 502–507, 2006.
[185]  P. Staat, G. Rioufol, C. Piot et al., “Postconditioning the human heart,” Circulation, vol. 112, no. 14, pp. 2143–2148, 2005.
[186]  C. E. Darling, P. B. Solari, C. S. Smith, M. I. Furman, and K. Przyklenk, ““Postconditioning” the human heart: multiple balloon inflations during primary angioplasty may confer cardioprotection,” Basic Research in Cardiology, vol. 102, no. 3, pp. 274–278, 2007.
[187]  M. E. Halkos, F. Kerendi, J. S. Corvera et al., “Myocardial protection with postconditioning is not enhanced by ischemic preconditioning,” Annals of Thoracic Surgery, vol. 78, no. 3, pp. 961–969, 2004.
[188]  X. M. Yang, J. B. Proctor, L. Cui, T. Krieg, J. M. Downey, and M. V. Cohen, “Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways,” Journal of the American College of Cardiology, vol. 44, no. 5, pp. 1103–1110, 2004.
[189]  X. M. Yang, S. Philipp, J. M. Downey, and M. V. Cohen, “Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation,” Basic Research in Cardiology, vol. 100, no. 1, pp. 57–63, 2005.
[190]  D. S. Burley, P. Ferdinandy, and G. F. Baxter, “Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling,” British Journal of Pharmacology, vol. 152, no. 6, pp. 855–869, 2007.
[191]  V. Sivaraman, N. R. Mudalgiri, C. Di Salvo et al., “Postconditioning protects human atrial muscle through the activation of the RISK pathway,” Basic Research in Cardiology, vol. 102, no. 5, pp. 453–459, 2007.
[192]  B. Lauzier, S. Delemasure, R. Debin et al., “Beneficial effects of myocardial postconditioning are associated with reduced oxidative stress in a senescent mouse model,” Transplantation, vol. 85, no. 12, pp. 1802–1808, 2008.
[193]  H. Y. Sun, N. P. Wang, M. Halkos et al., “Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways,” Apoptosis, vol. 11, no. 9, pp. 1583–1593, 2006.
[194]  M. V. Cohen, X. M. Yang, and J. M. Downey, “Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning's success,” Basic Research in Cardiology, vol. 103, no. 5, pp. 464–471, 2008.
[195]  G. Heusch, “No RISK, no...cardioprotection? A critical perspective,” Cardiovascular Research, vol. 84, no. 2, pp. 173–175, 2009.
[196]  K. Przyklenk, M. Maynard, C. E. Darling, and P. Whittaker, “Aging mouse hearts are refractory to infarct size reduction with post-conditioning,” Journal of the American College of Cardiology, vol. 51, no. 14, pp. 1393–1398, 2008.
[197]  L. M. Schwartz and C. J. Lagranha, “Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs,” American Journal of Physiology, vol. 290, no. 3, pp. H1011–H1018, 2006.
[198]  A. Skyschally, P. van Caster, K. Boengler et al., “Ischemic postconditioning in pigs: no causal role for risk activation,” Circulation Research, vol. 104, no. 1, pp. 15–18, 2009.
[199]  J. Musiolik, P. Van Caster, A. Skyschally et al., “Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs,” Cardiovascular Research, vol. 85, no. 1, pp. 110–117, 2010.
[200]  S. Lecour, “Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway?” Journal of Molecular and Cellular Cardiology, vol. 47, no. 1, pp. 32–40, 2009.
[201]  P. C. Chiari, M. W. Bienengraeber, P. S. Pagel, J. G. Krolikowski, J. R. Kersten, and D. C. Warltier, “Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits,” Anesthesiology, vol. 102, no. 1, pp. 102–109, 2005.
[202]  D. Tessier-Vetzel, R. Tissier, X. Waintraub, B. Ghaleh, and A. Berdeaux, “Isoflurane inhaled at the onset of reperfusion potentiates the cardioprotective effect of ischemic postconditioning through a NO-dependent mechanism,” Journal of Cardiovascular Pharmacology, vol. 47, no. 3, pp. 487–492, 2006.
[203]  D. Obal, S. Dettwiler, C. Favoccia, H. Scharbatke, B. Preckel, and W. Schlack, “The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo,” Anesthesia and Analgesia, vol. 101, no. 5, pp. 1252–1260, 2005.
[204]  D. M. Yellon, A. M. Alkhulaifi, and W. B. Pugsley, “Preconditioning the human myocardium,” Lancet, vol. 342, no. 8866, pp. 276–277, 1993.
[205]  D. P. Jenkins, W. B. Pugsley, A. M. Alkhulaifi, M. Kemp, J. Hooper, and D. M. Yellon, “Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery,” Heart, vol. 77, no. 4, pp. 314–318, 1997.
[206]  E. X. Lu, S. X. Chen, M. D. Yuan et al., “Preconditioning improves myocardial preservation in patients undergoing open heart operations,” Annals of Thoracic Surgery, vol. 64, no. 5, pp. 1320–1324, 1997.
[207]  L. K. Teoh, R. Grant, J. A. Hulf, W. B. Pugsley, and D. M. Yellon, “The effect of preconditioning (ischemic and pharmacological) on myocardial necrosis following coronary artery bypass graft surgery,” Cardiovascular Research, vol. 53, no. 1, pp. 175–180, 2002.
[208]  M. M. H. Cheung, R. K. Kharbanda, I. E. Konstantinov et al., “Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery. First clinical application in humans,” Journal of the American College of Cardiology, vol. 47, no. 11, pp. 2277–2282, 2006.
[209]  D. J. Hausenloy, P. K. Mwamure, V. Venugopal et al., “Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial,” Lancet, vol. 370, no. 9587, pp. 575–579, 2007.
[210]  S. P. Hoole, P. M. Heck, L. Sharples et al., “Cardiac remote ischemic preconditioning in coronary stenting (CRISP stent) study. A prospective, randomized control trial,” Circulation, vol. 119, no. 6, pp. 820–827, 2009.
[211]  H. E. B?tker, R. Kharbanda, M. R. Schmidt et al., “Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial,” The Lancet, vol. 375, no. 9716, pp. 727–734, 2010.
[212]  H. Thibault, C. Piot, P. Staat et al., “Long-term benefit of postconditioning,” Circulation, vol. 117, no. 8, pp. 1037–1044, 2008.
[213]  S. P. Loukogeorgakis, A. T. Panagiotidou, D. M. Yellon, J. E. Deanfield, and R. J. MacAllister, “Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm,” Circulation, vol. 113, no. 7, pp. 1015–1019, 2006.
[214]  S. Dragoni, G. Di Stolfo, S. Sicuro et al., “Postconditioning fails to prevent radial artery endothelial dysfunction induced by ischemia and reperfusion: evidence from a human in vivo study,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 6, pp. 611–615, 2006.
[215]  N. Koike, I. Takeyoshi, S. Ohki, M. Tokumine, and Y. Morishita, “The comparison of mitogen-activated protein kinases that become activated within the left ventricular and right atrial tissues following heart transplantation in canine model,” Journal of Investigative Surgery, vol. 20, no. 2, pp. 105–111, 2007.
[216]  C. Ballard-Croft, D. J. White, D. L. Maass, D. P. Hybki, and J. W. Horton, “Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-α,” American Journal of Physiology, vol. 280, no. 5, pp. H1970–H1981, 2001.
[217]  M. Li, D. Georgakopoulos, G. Lu et al., “p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart,” Circulation, vol. 111, no. 19, pp. 2494–2502, 2005.
[218]  M. Bellahcene, S. Jacquet, X. B. Cao et al., “Activation of p38 mitogen-activated protein kinase contributes to the early cardiodepressant action of tumor necrosis factor,” Journal of the American College of Cardiology, vol. 48, no. 3, pp. 545–555, 2006.
[219]  H. Yin, J. Zhang, H. Lin et al., “p38 mitogen-activated protein kinase inhibition decreases TNFalpha secretion and protects against left ventricular remodeling in rats with myocardial ischemia,” Inflammation, vol. 31, no. 2, pp. 65–73, 2008.
[220]  D. M. Conrad, S. J. Furlong, C. D. Doucette, R. T. M. Boudreau, and D. W. Hoskin, “Role of mitogen-activated protein kinases in Thy-1-induced T-lymphocyte activation,” Cellular Signalling, vol. 21, no. 8, pp. 1298–1307, 2009.
[221]  A. Tabata, M. Morikawa, M. Miyajima et al., “Suppression of alloreactivity and allograft rejection by SP600125, a small molecule inhibitor of c-Jun N-terminal kinase,” Transplantation, vol. 83, no. 10, pp. 1358–1364, 2007.
[222]  S. J. Smith, P. S. Fenwick, A. G. Nicholson et al., “Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages,” British Journal of Pharmacology, vol. 149, no. 4, pp. 393–404, 2006.
[223]  A. S. Clanachan, J. S. Jaswal, M. Gandhi et al., “Effects of inhibition of myocardial extracellular-responsive kinase and p38 mitogen-activated protein kinase on mechanical function of rat hearts after prolonged hypothermic ischemia,” Transplantation, vol. 75, no. 2, pp. 173–180, 2003.
[224]  T. Oto, A. Calderone, Z. Li, F. L. Rosenfeldt, and S. Pepe, “p38 Mitogen-activated protein kinase inhibition reduces inflammatory cytokines in a brain-dead transplant donor animal model.,” Heart, lung & circulation, vol. 18, no. 6, pp. 393–400, 2009.
[225]  N. Koike, I. Takeyoshi, S. Ohki, M. Tokumine, K. Matsumoto, and Y. Morishita, “Effects of adding p38 mitogen-activated protein-kinase inhibitor to celsior solution in canine heart transplantation from non-heart-beating donors,” Transplantation, vol. 77, no. 2, pp. 286–292, 2004.
[226]  A. Diestel, J. Roessler, A. Pohl-Schickinger et al., “Specific p38 inhibition in stimulated endothelial cells: a possible new anti-inflammatory strategy after hypothermia and rewarming,” Vascular Pharmacology, vol. 51, no. 4, pp. 246–252, 2009.
[227]  R. ?llinger, M. Thomas, P. Kogler et al., “Blockade of p38 MAPK inhibits chronic allograft vasculopathy,” Transplantation, vol. 85, no. 2, pp. 293–297, 2008.
[228]  N. Hashimoto, I. Takeyoshi, D. Yoshinari et al., “Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to euro-collins solution on reperfusion injury in canine lung transplantation,” Transplantation, vol. 74, no. 3, pp. 320–326, 2002.
[229]  D. Yoshinari, I. Takeyoshi, M. Kobayashi et al., “Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to University of Wisconsin solution on reperfusion injury in liver transplantation,” Transplantation, vol. 72, no. 1, pp. 22–27, 2001.
[230]  C. Doucet, S. Milin, F. Favreau et al., “A p38 mitogen-activated protein kinase inhibitor protects against renal damage in a non-heart-beating donor model,” American Journal of Physiology, vol. 295, no. 1, pp. F179–F191, 2008.
[231]  M. Kosieradzki, “Mechanisms of ischemic preconditioning and its application in transplantation,” Annals of Transplantation, vol. 7, no. 3, pp. 12–20, 2002.
[232]  J. T. Ambros, I. Herrero-Fresneda, O. G. Borau, and J. M. G. Boira, “Ischemic preconditioning in solid organ transplantation: from experimental to clinics,” Transplant International, vol. 20, no. 3, pp. 219–229, 2007.
[233]  N. Selzner, M. Boehnert, and M. Selzner, “Preconditioning, postconditioning, and remote conditioning in solid organ transplantation: basic mechanisms and translational applications,” Transplantation Reviews. In press.
[234]  M. Karck, P. Rahmanian, and A. Haverich, “Ischemic preconditioning enhances donor heart preservation,” Transplantation, vol. 62, no. 1, pp. 17–22, 1996.
[235]  J. T. Cope, M. C. Mauney, D. Banks et al., “Intravenous phenylephrine preconditioning of cardiac grafts from non- heart-beating donors,” Annals of Thoracic Surgery, vol. 63, no. 6, pp. 1664–1668, 1997.
[236]  R. W. Landymore, A. J. Bayes, J. T. Murphy, and J. H. Fris, “Preconditioning prevents myocardial stunning after cardiac transplantation,” Annals of Thoracic Surgery, vol. 66, no. 6, pp. 1953–1957, 1998.
[237]  I. Ahmet, Y. Sawa, M. Nishimura, M. Kitakaze, and H. Matsuda, “Cardioprotective effect of diadenosine tetraphosphate (AP4A) preservation in hypothermic storage and its relation with mitochondrial ATP- sensitive potassium channels,” Transplantation, vol. 69, no. 1, pp. 16–20, 2000.
[238]  E. Kevelaitis, A. Oubénaissa, C. Mouas, J. Peynet, and P. Menasché, “Ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels or Na+/H+ exchange inhibition: which is the best protective strategy for heart transplants?” Journal of Thoracic and Cardiovascular Surgery, vol. 121, no. 1, pp. 155–162, 2001.
[239]  E. Kevelaitis, A. Oubéna?ssa, J. Peynet, C. Mouas, and P. Menasché, “Preconditioning by mitochondrial ATP-sensitive potassium channel openers: an effective approach for improving the preservation of heart transplants,” Circulation, vol. 100, no. 19, supplement, pp. II345–II350, 1999.
[240]  M. Hicks, Z. Y. Du, P. Jansz, S. Rainer, P. Spratt, and P. S. Macdonald, “ATP-sensitive potassium channel activation mimics the protective effect of ischaemic preconditioning in the rat isolated working heart after prolonged hypothermic storage,” Clinical and Experimental Pharmacology and Physiology, vol. 26, no. 1, pp. 20–25, 1999.
[241]  E. Kevelaitis, J. Peynet, C. Mouas, J. M. Launay, and P. Menasché, “Opening of potassium channels the common cardioprotective link between preconditioning and natural hibernation?” Circulation, vol. 99, no. 23, pp. 3079–3085, 1999.
[242]  G. Valen, S. Takeshima, and J. Vaage, “Preconditioning improves cardiac function after global ischemia, but not after cold cardioplegia,” Annals of Thoracic Surgery, vol. 62, no. 5, pp. 1397–1403, 1996.
[243]  M. Kirsch, F. Farhat, J. P. Garnier, and D. Loisance, “Acute brain death abolishes the cardioprotective effects of ischemic preconditioning in the rabbit,” Transplantation, vol. 69, no. 10, pp. 2013–2019, 2000.
[244]  F. Farhat, D. Loisance, J. P. Garnier, and M. Kirsch, “Norepinephrine release after acute brain death abolishes the cardioprotective effects of ischemic preconditioning in rabbit,” European Journal of Cardio-thoracic Surgery, vol. 19, no. 3, pp. 313–320, 2001.
[245]  H. R. Bouma, M. E. Ketelaar, B. A. Yard, R. J. Ploeg, and R. H. Henning, “AMP-activated protein kinase as a target for preconditioning in transplantation medicine,” Transplantation, vol. 90, no. 4, pp. 353–358, 2010.
[246]  P. Botha, G. A. MacGowan, and J. H. Dark, “Sildenafil citrate augments myocardial protection in heart transplantation,” Transplantation, vol. 89, no. 2, pp. 169–177, 2010.
[247]  R. T. Clements, B. Cordeiro, J. Feng, C. Bianchi, and F. W. Sellke, “Rottlerin increases cardiac contractile performance and coronary perfusion through BKca++ channel activation after cold cardioplegic arrest in isolated hearts,” Circulation, vol. 124, no. 11, supplement 1, pp. S55–S61, 2011.
[248]  M. Tanaka, F. Gunawan, R. D. Terry et al., “Inhibition of heart transplant injury and graft coronary artery disease after prolonged organ ischemia by selective protein kinase C regulators,” Journal of Thoracic and Cardiovascular Surgery, vol. 129, no. 5, pp. 1160–1167, 2005.
[249]  B. A. Finegan, M. Gandhi, M. R. Cohen, D. Legatt, and A. S. Clanachan, “Isoflurane alters energy substrate metabolism to preserve mechanical function in isolated rat hearts following prolonged no-flow hypothermic storage,” Anesthesiology, vol. 98, no. 2, pp. 379–386, 2003.
[250]  A. Nakao, D. J. Kaczorowski, Y. Wang et al., “Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both,” Journal of Heart and Lung Transplantation, vol. 29, no. 5, pp. 544–553, 2010.
[251]  I. E. Konstantinov, J. Li, M. M. Cheung et al., “Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism,” Transplantation, vol. 79, no. 12, pp. 1691–1695, 2005.
[252]  B. Lauzier, P. Sicard, O. Bouchot et al., “After four hours of cold ischemia and cardioplegic protocol, the heart can still be rescued with postconditioning,” Transplantation, vol. 84, no. 11, pp. 1474–1482, 2007.
[253]  Y. Tang, A. Mennander, N. Oksala et al., “Postconditioning and remote postconditioning of ischemic rat cardiac grafts,” European Surgical Research, vol. 45, no. 1, pp. 1–8, 2010.
[254]  D. Azoulay, M. Del Gaudio, P. Andreani et al., “Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft's preservation and function: the Ying and the Yang,” Annals of Surgery, vol. 242, no. 1, pp. 133–139, 2005.
[255]  W. Jassem, S. V. Fuggle, L. Cerundolo, N. D. Heaton, and M. Rela, “Ischemic preconditioning of cadaver donor livers protects allografts following transplantation,” Transplantation, vol. 81, no. 2, pp. 169–174, 2006.
[256]  M. S. Marber, J. D. Molkentin, and T. Force, “Developing small molecules to inhibit kinases unkind to the heart: P38 MAPK as a case in point,” Drug Discovery Today, vol. 7, no. 2, pp. e123–e127, 2010.
[257]  M. C. Genovese, S. B. Cohen, D. Wofsy et al., “A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis,” Journal of Rheumatology, vol. 38, no. 5, pp. 846–854, 2011.
[258]  P. Anand, R. Shenoy, J. E. Palmer et al., “Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury,” European Journal of Pain, vol. 15, no. 10, pp. 1040–1048, 2011.
[259]  D. J. Hausenloy, G. Baxter, R. Bell et al., “Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations,” Basic Research in Cardiology, vol. 105, no. 6, pp. 677–686, 2010.
[260]  C. Piot, P. Croisille, P. Staat et al., “Effect of cyclosporine on reperfusion injury in acute myocardial infarction,” New England Journal of Medicine, vol. 359, no. 5, pp. 473–481, 2008.
[261]  R. W. Jamieson and P. J. Friend, “Organ reperfusion and preservation,” Frontiers in Bioscience, vol. 13, no. 1, pp. 221–235, 2008.
[262]  S. Jacobs, F. Rega, and B. Meyns, “Current preservation technology and future prospects of thoracic organs—part 2: heart,” Current Opinion in Organ Transplantation, vol. 15, no. 2, pp. 156–159, 2010.
[263]  S. Osaki, K. Ishino, Y. Kotani et al., “Resuscitation of non-beating donor hearts using continuous myocardial perfusion: the importance of controlled initial reperfusion,” Annals of Thoracic Surgery, vol. 81, no. 6, pp. 2167–2171, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133