全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Major Histocompatibility Complex in Transplantation

DOI: 10.1155/2012/842141

Full-Text   Cite this paper   Add to My Lib

Abstract:

The transplant of organs is one of the greatest therapeutic achievements of the twentieth century. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the principal target of the immune response is the MHC (major histocompatibility complex) molecules expressed on the surface of donor cells. However, we should not forget that the innate and adaptive immunities are closely interrelated and should be viewed as complementary and cooperating. When a human transplant is performed, HLA (human leukocyte antigens) molecules from a donor are recognized by the recipient's immune system triggering an alloimmune response Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. This paper will present MHC, the innate and adaptive immunities, and clinical HLA testing. 1. Introduction The primary function of the immune system is to protect the host from infectious microbes in its environment. This system has evolved over millions of years, in response of coexistence with microorganisms. Basically, the system can be divided in two components, the innate and adaptive immunities. 2. Innate and Adaptive Immunities The innate also called natural immunity refers to a nonspecific response that involves the recruitment of diverse components of the immune system such as macrophages, neutrophils, natural killer cells (NK cells), cytokines, several cellular receptors, complement components, cytokines, Toll-like receptors (TLRs), and antimicrobial peptides (AMPs). This response is phylogenetically older in comparison to the adaptive immunity, which involves recognition of specific antigen, conferring both specificity and a memory effect [1]. The main effectors of the adaptive immunity are the T and B cells. T cells recognize antigen in the form of peptide bound to major histocompatibility complex (MHC) molecules [2]. B cells have immunoglobulin receptors that recognize the antigenic portions of determined molecules [3]. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the principal target of the immune response is the MHC molecules expressed on the surface of donor cells. However, we should not forget that the innate and adaptive immunities are divided only by educational purposes, since both are codependent. For example, T-cell activation leads to the production of cytokines and chemokines which in turn may recruit components of the innate immunity like NK cells or

References

[1]  D. D. Chaplin, “Overview of the human immune response,” Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp. S430–S435, 2006.
[2]  F. G. Lakkis and M. H. Sayegh, “Memory T cells: a hurdle to immunologic tolerance,” Journal of the American Society of Nephrology, vol. 14, no. 9, pp. 2402–2410, 2003.
[3]  D. Nemazee, “Receptor selection in B and T lymphocytes,” Annual Review of Immunology, vol. 18, pp. 19–51, 2000.
[4]  J. R. Pratt, S. A. Basheer, and S. H. Sacks, “Local synthesis of complement component C3 regulates acute renal transplant rejection,” Nature Medicine, vol. 8, no. 6, pp. 582–587, 2002.
[5]  E. Guaní-Guerra, T. Santos-Mendoza, S. O. Lugo-Reyes, and L. M. Terán, “Antimicrobial peptides: general overview and clinical implications in human health and disease,” Clinical Immunology, vol. 135, no. 1, pp. 1–11, 2010.
[6]  A. Chandraker and J. J. Lacomini, “Transplantation immunobiology,” in Brenner & Rector's The kidney, B. M. Brenner and S. A. Leivne, Eds., pp. 2104–2111, Elsevier Saunders, Philadelphia, Pa, USA, 8th edition, 2007.
[7]  E. M. Mickelson, A. Fefer, R. Storb, and E. D. Thomas, “Correlation of the relative response index with marrow graft rejection in patients with aplastic anemia,” Transplantation, vol. 22, no. 3, pp. 294–302, 1976.
[8]  W. R. Guild, J. H. Harrison, J. P. Merrill, and J. Murray, “Successful homotransplantation of the kidney in an identical twin,” Transactions of the American Clinical and Climatological Association, vol. 67, pp. 167–173, 1955.
[9]  L. Michon, J. Hamburger, N. Oeconomos, et al., “An attempted kidney transplantation in man: medical and biological aspects,” La Presse Médicale, vol. 61, no. 70, pp. 1419–1423, 1953.
[10]  P. A. Gorer, “The genetic and antigenic basis of tumor transplantation,” The Journal of Pathology and Bacteriology, vol. 44, no. 3, pp. 691–697, 1937.
[11]  G. D. Snell, “Methods for the study of histocompatibility genes,” Journal of Genetics, vol. 49, no. 2, pp. 87–108, 1948.
[12]  J. Chinen and R. H. Buckley, “Transplantation immunology: solid organ and bone marrow,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S324–S335, 2010.
[13]  J. A. N. Klein and A. Sato, “The HLA system: first of two parts,” The New England Journal of Medicine, vol. 343, no. 10, pp. 702–709, 2000.
[14]  A. King, S. E. Hiby, L. Gardner et al., “Recognition of trophoblast HLA class I molecules by decidual NK cell receptors—a review,” Placenta, vol. 21, no. 1, pp. S81–S85, 2000.
[15]  P. Garcia, M. Llano, A. B. de Heredia, et al., “Human T cell receptor–mediated recognition of HLA-E,” European Journal of Immunology, vol. 32, no. 4, pp. 936–944, 2002.
[16]  P. Le Bouteiller, C. Solier, J. Proll, M. Aguerre-Girr, S. Fournel, and F. Lenfant, “The major histocompatability complex in pregnancy: part II. Placental HLA-G protein expression in vivo: where and what for?” Human Reproduction Update, vol. 5, no. 3, pp. 223–233, 1999.
[17]  P. Le Bouteiller and F. Lenfant, “Antigen-presenting function(s) of the non-classical HLA-E, -F and -G class I molecules: the beginning of a story,” Research in Immunology, vol. 147, no. 5, pp. 301–313, 1996.
[18]  J. Klein and A. Sato, “Advances in immunology: the HLA system (second of two parts),” The New England Journal of Medicine, vol. 343, no. 11, pp. 782–786, 2000.
[19]  J. G. Bodmer, S. G. E. Marsh, E. D. Albert et al., “Nomenclature for factors of the HLA system, 1998,” Tissue Antigens, vol. 53, no. 4, pp. 407–446, 1999.
[20]  J. G. Luz, M. Huang, K. C. Garcia et al., “Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions,” Journal of Experimental Medicine, vol. 195, no. 9, pp. 1175–1186, 2002.
[21]  R. N. Germain, “MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation,” Cell, vol. 76, no. 2, pp. 287–299, 1994.
[22]  I. A. York and K. L. Rock, “Antigen processing and presentation by the class I major histocompatibility complex,” Annual Review of Immunology, vol. 14, pp. 369–396, 1996.
[23]  K. Natarajan, N. Dimasi, J. Wang, R. A. Mariuzza, and D. H. Margulies, “Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination,” Annual Review of Immunology, vol. 20, pp. 853–885, 2002.
[24]  W. M. Yokoyama, B. F. Daniels, W. E. Seaman, R. Hunziker, D. H. Margulies, and H. R. C. Smith, “A family of murine NK cell receptors specific for target cell MHC class I molecules,” Seminars in Immunology, vol. 7, no. 2, pp. 89–101, 1995.
[25]  P. Hoglund, J. Sundback, M. Y. Olsson-Alheim et al., “Host MHC class I gene control of NK-cell specificity in the mouse,” Immunological Reviews, vol. 155, pp. 11–28, 1997.
[26]  S. G. E. Marsh, E. D. Albert, W. F. Bodmer et al., “Nomenclature for factors of the HLA system, 2010,” Tissue Antigens, vol. 75, no. 4, pp. 291–455, 2010.
[27]  G. Opelz, J. Mytilineos, S. Scherer et al., “Survival of DNA HLA-DR typed and matched cadaver kidney transplants,” The Lancet, vol. 338, no. 8765, pp. 461–463, 1991.
[28]  G. Opelz, T. Wujciak, B. Dohler, S. Scherer, and J. Mytilineos, “HLA compatibility and organ transplant survival. Collaborative transplant study,” Reviews in Immunogenetics, vol. 1, no. 3, pp. 334–342, 1999.
[29]  P. J. Morris, R. J. Johnson, S. V. Fuggle, et al., “Analysis of factors that affect outcome of primary cadaveric renal transplantation in the UK. HLA Task Force of the Kidney Advisory Group of the United Kingdom Transplant Support Service Authority (UKTSSA),” The Lancet, vol. 354, no. 9185, pp. 1147–1152, 1999.
[30]  S. K. Takemoto, P. I. Terasaki, D. W. Gjertson, and J. M. Cecka, “Twelve years' experience with national sharing of HLA-matched cadaveric kidneys for transplantation,” The New England Journal of Medicine, vol. 343, no. 15, pp. 1078–1084, 2000.
[31]  G. Opelz, J. Mytilineos, T. Wujciak, V. Schwarz, and D. Back, “Current status of HLA matching in renal transplantation,” Clinical Investigator, vol. 70, no. 9, pp. 767–772, 1992.
[32]  F. A. Zantvoort, J. D'Amaro, G. G. Persijn et al., “The impact of HLA-A matching on long-term survival of renal allografts,” Transplantation, vol. 61, no. 5, pp. 841–844, 1996.
[33]  W. Land, “The potential impact of the reperfusion injury on acute and chronic rejection events following organ transplantation,” Transplantation Proceedings, vol. 26, no. 6, pp. 3169–3171, 1994.
[34]  W. Land and K. Messmer, “The impact of ischemia/reperfusion injury on specific and non-specific, early and late chronic events after organ transplantation,” Transplantation Reviews, vol. 10, no. 4, pp. 236–253, 1996.
[35]  W. G. Land, “Innate alloimmunity: history and current knowledge,” Experimental and Clinical Transplantation, vol. 5, no. 1, pp. 575–584, 2007.
[36]  A. Bharat and T. Mohanakumar, “Allopeptides and the alloimmune response,” Cellular Immunology, vol. 248, no. 1, pp. 31–43, 2007.
[37]  D. S. Game and R. I. Lechler, “Pathways of allorecognition: implications for transplantation tolerance,” Transplant Immunology, vol. 10, no. 2-3, pp. 101–108, 2002.
[38]  P. Portoles, J. M. Rojo, and C. A. Janeway Jr., “Asymmetry in the recognition of antigen: self class II MHC and non-self class II MHC molecules by the same T-cell receptor,” Journal of Molecular and Cellular Immunology, vol. 4, no. 3, pp. 129–137, 1988.
[39]  P. Kourilsky, G. Chaouat, C. Rabourdin-Combe, and J. M. Claverie, “Working principles in the immune system implied by the “peptidic self” model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 10, pp. 3400–3404, 1987.
[40]  L. A. Sherman and S. Chattopadhyay, “The molecular basis of allorecognition,” Annual Review of Immunology, vol. 11, pp. 385–402, 1993.
[41]  P. Matzinger and M. J. Bevan, “Hypothesis. Why do so many lymphocytes respond to major histocompatibility antigens,” Cellular Immunology, vol. 29, no. 1, pp. 1–5, 1977.
[42]  P. S. Heeger, “T-cell allorecognition and transplant rejection: a summary and update,” American Journal of Transplantation, vol. 3, no. 5, pp. 525–533, 2003.
[43]  G. Benichou, A. Valujskikh, and P. S. Heeger, “Contributions of direct and indirect T cell alloreactivity during allograft rejection in mice,” Journal of Immunology, vol. 162, no. 1, pp. 352–358, 1999.
[44]  G. J. Sawyer, R. Dalchau, and J. W. Fabre, “Indirect T cell allorecognition: a cyclosporin A resistant pathway for T cell help for antibody production to donor MHC antigens,” Transplant Immunology, vol. 1, no. 1, pp. 77–81, 1993.
[45]  B. Susskind, M. R. Iannotti, M. D. Shornick, N. S. Steward, J. Gorka, and T. Mohanakumar, “Indirect allorecognition of HLA class I peptides by CD4+ cytolytic T lymphocytes,” Human Immunology, vol. 46, no. 1, pp. 1–9, 1996.
[46]  B. P. Chen, A. Madrigal, and P. Parham, “Cytotoxic T cell recognition of an endogenous class I HLA peptide presented by a class II HLA molecule,” Journal of Experimental Medicine, vol. 172, no. 3, pp. 779–788, 1990.
[47]  S. Essaket, J. Fabron, C. de Preval, and M. Thomsen, “Corecognition of HLA-A1 and HLA-DPw3 by a human CD4+ alloreactive T lymphocyte clone,” Journal of Experimental Medicine, vol. 172, no. 1, pp. 387–390, 1990.
[48]  J. P. Vella, M. Spadafora-Ferreira, B. Murphy et al., “Indirect allorecognition of major histocompatibility complex allopeptides in human renal transplant recipients with chronic graft dysfunction,” Transplantation, vol. 64, no. 6, pp. 795–800, 1997.
[49]  Z. Liu, A. I. Colovai, S. Tugulea et al., “Indirect recognition of donor HLA-DR peptides in organ allograft rejection,” Journal of Clinical Investigation, vol. 98, no. 5, pp. 1150–1157, 1996.
[50]  A. Bharat, K. Narayanan, T. Street et al., “Early posttransplant inflammation promotes the development of alloimmunity and chronic human lung allograft rejection,” Transplantation, vol. 83, no. 2, pp. 150–158, 2007.
[51]  S. Jiang, O. Herrera, and R. I. Lechler, “New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance,” Current Opinion in Immunology, vol. 16, no. 5, pp. 550–557, 2004.
[52]  F. Andre, N. Chaput, N. E. C. Schartz et al., “Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells,” Journal of Immunology, vol. 172, no. 4, pp. 2126–2136, 2004.
[53]  P. Bedford, K. Garner, and S. C. Knight, “MHC class II molecules transferred between allogeneic dendritic cells stimulate primary mixed leukocyte reactions,” International Immunology, vol. 11, no. 11, pp. 1739–1744, 1999.
[54]  C. Thery, L. Duban, E. Segura, P. Veron, O. Lantz, and S. Amigorena, “Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes,” Nature Immunology, vol. 3, no. 12, pp. 1156–1162, 2002.
[55]  J. C. Boyington, A. G. Brooks, and P. D. Sun, “Structure of killer cell immunoglobulin-like receptors and their recognition of the class I MHC molecules,” Immunological Reviews, vol. 181, pp. 66–78, 2001.
[56]  A. Kroemer, X. Xiao, N. Degauque et al., “The innate NK cells, allograft rejection, and a key role for IL-15,” Journal of Immunology, vol. 180, no. 12, pp. 7818–7826, 2008.
[57]  L. J. D'Orsogna, D. L. Roelen, I. I. Doxiadis, and F. H. Claas, “TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition,” Immunogenetics, vol. 64, no. 2, pp. 77–85, 2012.
[58]  H. L. Jung, “Shedding a new light on the HLA matching,” The Korean Journal of Hematology, vol. 46, no. 1, pp. 1–2, 2011.
[59]  B. H. Qureshi, “Consensus and controversies on HLA matching and crossmatching in transplantation,” Saudi Journal of Kidney Diseases and Transplantation, vol. 8, no. 2, pp. 138–144, 1997.
[60]  J. Gloor and M. D. Stegall, “Sensitized renal transplant recipients: current protocols and future directions,” Nature Reviews Nephrology, vol. 6, no. 5, pp. 297–306, 2010.
[61]  P. B. Minucci, V. Grimaldi, A. Casamassimi, et al., “Methodologies for anti-HLA antibody screening in patients awaiting kidney transplant: a comparative study,” Experimental and Clinical Transplantation, vol. 9, no. 6, pp. 381–386, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133