Gene expression and secretion of the cardiac polypeptide hormones atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) are simultaneously upregulated in various cardiac disorders such as congestive heart failure, ischemic heart disease, and hypertensive heart disease, in which hemodynamic or neuroendocrine changes are key components in the progression of disease. However, during acute cardiac allograft rejection, plasma BNP levels are increased but not those of ANF. Successful treatment of the rejection episode decreases the elevated plasma BNP to prerejection values suggesting that substances related to inflammation may selectively influence BNP gene expression. Indeed, cytokines such as TNFα and IL-1β selectively stimulate cardiac BNP at the transcriptional and translational levels in cardiomyocyte cultures without affecting ANF. This selective BNP increase is seen in vivo, in addition to acute cardiac allograft rejection, in several circumstances where inflammation significantly contributes to the pathogenesis of disease such as in sepsis and in acute myocarditis. 1. Introduction Seven years after the discovery of the natriuretic factor from the atria of the heart (ANF) [1, 2] and five years after the first purification and sequencing of its circulating form [3], brain natriuretic peptide (BNP) was isolated from porcine brain [4]. Subsequently, BNP was found to be most abundantly expressed in the atria of the heart. The biologically active, circulating forms of these cardiac natriuretic peptides (NPs) ANF ( ) and BNP ( ) are C-terminal fragments from their respective prohormones: and . The N-terminal fragments of ANF (NT-proANF) and BNP (NT-proBNP) coexist in blood with the C-terminal fragments. Measurement of both N- and C-terminal peptides in blood has been used in clinical studies in relation to cardiovascular disorders [5]. ANF and BNP share most biological properties including diuretic, natriuretic, vasorelaxant, and cardiac antihypertrophic and antifibrotic properties that are effected by signaling through a common receptor: the guanylyl cyclase- (GC-) A receptor [6]. However, some differences between ANF and BNP have been reported on control of gene expression and phenotype arising from observations in transgenic animals. BNP gene expression was induced more rapidly than that of ANF in the left ventricles following coronary artery ligation in rats [7]. Mice with genetically reduced production of ANF can lead to salt-sensitive hypertension [8], but mice with targeted disruption of the BNP gene develop multifocal fibrotic lesions
References
[1]
A. J. de Bold, H. B. Borenstein, A. T. Veress, and H. Sonnenberg, “A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats,” Life Sciences, vol. 28, no. 1, pp. 89–94, 1981.
[2]
A. J. de Bold and T. A. Salerno, “Natriuretic activity of extracts obtained from hearts of different species and from various rat tissues,” Canadian Journal of Physiology and Pharmacology, vol. 61, no. 2, pp. 127–130, 1983.
[3]
T. G. Flynn, M. L. de Bold, and A. J. de Bold, “The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties,” Biochemical and Biophysical Research Communications, vol. 117, no. 3, pp. 859–865, 1983.
[4]
K. Maekawa, T. Sudoh, M. Furusawa et al., “Cloning and sequence analysis of cDNA encoding a precursor for porcine brain natriuretic peptide,” Biochemical and Biophysical Research Communications, vol. 157, no. 1, pp. 410–416, 1988.
[5]
H. Ramos and A. J. de Bold, “Gene expression, processing, and secretion of natriuretic peptides: physiologic and diagnostic implications,” Heart Failure Clinics, vol. 2, no. 3, pp. 255–268, 2006.
[6]
T. Nishikimi, N. Maeda, and H. Matsuoka, “The role of natriuretic peptides in cardioprotection,” Cardiovascular Research, vol. 69, no. 2, pp. 318–328, 2006.
[7]
N. Hama, H. Itoh, G. Shirakami et al., “Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction,” Circulation, vol. 92, no. 6, pp. 1558–1564, 1995.
[8]
S. W. M. John, J. H. Krege, P. M. Oliver et al., “Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension,” Science, vol. 267, no. 5198, pp. 679–681, 1995.
[9]
N. Tamura, Y. Ogawa, H. Chusho et al., “Cardiac fibrosis in mice lacking brain natriuretic peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4239–4244, 2000.
[10]
A. J. de Bold, B. G. Bruneau, and M. L. K. de Bold, “Mechanical and neuroendocrine regulation of the endocrine heart,” Cardiovascular Research, vol. 31, no. 1, pp. 7–18, 1996.
[11]
A. J. de Bold, K. K. Y. Ma, Y. Zhang, M. L. K. de Bold, M. Bensimon, and A. Khoshbaten, “The physiological and pathophysiological modulation of the endocrine function of the heart,” Canadian Journal of Physiology and Pharmacology, vol. 79, no. 8, pp. 705–714, 2001.
[12]
N. Yokota, B. G. Bruneau, B. E. Fernandez et al., “Dissociation of cardiac hypertrophy, myosin heavy chain isoform expression, and natriuretic peptide production in DOCA-salt rats,” American Journal of Hypertension, vol. 8, no. 3, pp. 301–310, 1995.
[13]
M. Mukoyama, K. Nakao, K. Hosoda et al., “Brain natriuretic peptide as a novel cardiac hormone in humans: evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide,” Journal of Clinical Investigation, vol. 87, no. 4, pp. 1402–1412, 1991.
[14]
A. Clerico, G. Iervasi, M. G. del Chicca et al., “Circulating levels of cardiac natriuretic peptides (ANP and BNP) measured by highly sensitive and specific immunoradiometric assays in normal subjects and in patients with different degrees of heart failure,” Journal of Endocrinological Investigation, vol. 21, no. 3, pp. 170–179, 1998.
[15]
R. G. Masters, R. A. Davies, W. J. Keon, V. M. Walley, A. Koshal, and A. J. de Bold, “Neuroendocrine response to cardiac transplantation,” Canadian Journal of Cardiology, vol. 9, no. 7, pp. 609–617, 1993.
[16]
R. G. Masters, R. A. Davies, J. P. Veinot, P. J. Hendry, S. J. Smith, and A. J. de Bold, “Discoordinate modulation of natriuretic peptides during acute cardiac allograft rejection in humans,” Circulation, vol. 100, no. 3, pp. 287–291, 1999.
[17]
T. Ogawa, J. P. Veinot, R. A. Davies et al., “Neuroendocrine profiling of humans receiving cardiac allografts,” Journal of Heart and Lung Transplantation, vol. 24, no. 8, pp. 1046–1054, 2005.
[18]
B. Geny, M. Follenius, E. Epailly et al., “Transient reduction without normalization of brain natriuretic peptide early after heart transplantation,” Journal of Thoracic and Cardiovascular Surgery, vol. 115, no. 2, pp. 473–475, 1998.
[19]
T. Tsutamoto, A. Wada, K. Maeda et al., “Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction,” Circulation, vol. 96, no. 2, pp. 509–516, 1997.
[20]
M. R. Cowie, A. D. Struthers, D. A. Wood et al., “Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care,” The Lancet, vol. 350, no. 9088, pp. 1349–1353, 1997.
[21]
T. A. McDonagh, S. D. Robb, D. R. Murdoch et al., “Biochemical detection of left-ventricular systolic dysfunction,” The Lancet, vol. 351, no. 9095, pp. 9–13, 1998.
[22]
A. Hammerer-Lercher, E. Neubauer, S. Müller, O. Pachinger, B. Puschendorf, and J. Mair, “Head-to-head comparison of N-terminal pro-brain natriuretic peptide, brain natriuretic peptide and N-terminal pro-atrial natriuretic peptide in diagnosing left ventricular dysfunction,” Clinica Chimica Acta, vol. 310, no. 2, pp. 193–197, 2001.
[23]
U. Alehagen, E. Svensson, and U. Dahlstr?m, “Natriuretic peptide biomarkers as information indicators in elderly patients with possible heart failure followed over six years: a head-to-head comparison of four cardiac natriuretic peptides,” Journal of Cardiac Failure, vol. 13, no. 6, pp. 452–461, 2007.
[24]
D. N. Tziakas, G. K. Chalikias, E. I. Hatzinikolaou et al., “N-terminal pro-B-type natriuretic peptide and matrix metalloproteinases in early and late left ventricular remodeling after acute myocardial infarction,” American Journal of Cardiology, vol. 96, no. 1, pp. 31–34, 2005.
[25]
I. Betti, G. Castelli, A. Barchielli et al., “The role of N-terminal PRO-brain natriuretic peptide and echocardiography for screening asymptomatic left ventricular dysfunction in a population at high risk for heart failure. The PROBE-HF study,” Journal of Cardiac Failure, vol. 15, no. 5, pp. 377–384, 2009.
[26]
P. A. Scott, J. Barry, P. R. Roberts, and J. M. Morgan, “Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis,” European Journal of Heart Failure, vol. 11, no. 10, pp. 958–966, 2009.
[27]
G. Coutance, O. le Page, T. Lo, and M. Hamon, “Prognostic value of brain natriuretic peptide in acute pulmonary embolism,” Critical Care, vol. 12, no. 4, article R109, 2008.
[28]
L. Almenar, I. Hervás, L. Martínez-Dolz et al., “The value of brain natriuretic peptide for the diagnosis of heart transplant rejection,” Transplantation Proceedings, vol. 34, no. 1, pp. 174–175, 2002.
[29]
M. A. Arnau-Vives, L. Almenar, I. Hervas et al., “Predictive value of brain natriuretic peptide in the diagnosis of heart transplant rejection,” Journal of Heart and Lung Transplantation, vol. 23, no. 7, pp. 850–856, 2004.
[30]
A. Hammerer-Lercher, J. Mair, H. Antretter et al., “B-type natriuretic peptide as a marker of allograft rejection after heart transplantation,” Journal of Heart and Lung Transplantation, vol. 24, no. 9, pp. 1444.e5–1444.e8, 2005.
[31]
A. H. Wu, M. L. Johnson, K. D. Aaronson, D. Gordon, D. B. S. Dyke, and T. M. Koelling, “Brain natriuretic peptide predicts serious cardiac allograft rejection independent of hemodynamic measurements,” Journal of Heart and Lung Transplantation, vol. 24, no. 1, pp. 52–57, 2005.
[32]
J. W. Rossano, S. W. Denfield, J. J. Kim et al., “B-type natriuretic peptide is a sensitive screening test for acute rejection in pediatric heart transplant patients,” Journal of Heart and Lung Transplantation, vol. 27, no. 6, pp. 649–654, 2008.
[33]
C. L. Lindblade, D. S. Chun, R. K. Darragh, R. L. Caldwell, D. J. Murphy, and M. S. Schamberger, “Value of plasma B-type natriuretic peptide as a marker for rejection in pediatric heart transplant recipients,” American Journal of Cardiology, vol. 95, no. 7, pp. 909–911, 2005.
[34]
M. R. Mehra, P. A. Uber, D. Walther et al., “Gene expression profiles and B-type natriuretic peptide elevation in heart transplantation: more than a hemodynamic marker,” Circulation, vol. 114, no. 1, supplement, pp. I21–I26, 2006.
[35]
R. S. Gardner, K. S. Chong, A. J. Murday, J. J. Morton, and T. A. McDonagh, “N-terminal brain natriuretic peptide is predictive of death after cardiac transplantation,” Heart, vol. 92, no. 1, pp. 121–123, 2006.
[36]
M. H. Park, R. L. Scott, P. A. Uber, B. C. Harris, R. Chambers, and M. R. Mehra, “Usefulness of B-type natriuretic peptide levels in predicting hemodynamic perturbations after heart transplantation despite preserved left ventricular systolic function,” American Journal of Cardiology, vol. 90, no. 12, pp. 1326–1329, 2002.
[37]
R. Klingenberg, A. Koch, C. Gleissner et al., “Determinants of B-type natriuretic peptide plasma levels in the chronic phase after heart transplantation,” Transplant International, vol. 18, no. 2, pp. 169–176, 2005.
[38]
J. O. O'Neill, A. T. Mcrae III, R. W. Troughton et al., “Brain natriuretic peptide levels do not correlate with acute cellular rejection in de novo orthotopic heart transplant recipients,” Journal of Heart and Lung Transplantation, vol. 24, no. 4, pp. 416–420, 2005.
[39]
A. Cuppoletti, E. Roig, F. Pérez-Villa et al., “Value of NT-proBNP determinations in the follow-up of heart transplantation,” Transplantation Proceedings, vol. 37, no. 9, pp. 4033–4035, 2005.
[40]
I. Hervás, M. A. Arnau, L. Almenar et al., “Ventricular natriuretic peptide (BNP) in heart transplantation: BNP correlation with endomyocardial biopsy, laboratory and hemodynamic measures,” Laboratory Investigation, vol. 84, no. 1, pp. 138–145, 2004.
[41]
M. M. Kittleson, D. V. Skojec, I. S. Wittstein et al., “The change in B-type natriuretic peptide levels over time predicts significant rejection in cardiac transplant recipients,” Journal of Heart and Lung Transplantation, vol. 28, no. 7, pp. 704–709, 2009.
[42]
W. C. Kirchhoff, R. Gradaus, J. Stypmann et al., “Vasoactive peptides during long-term follow-up of patients after cardiac transplantation,” Journal of Heart and Lung Transplantation, vol. 23, no. 3, pp. 284–288, 2004.
[43]
M. Colvin-Adams and A. Agnihotri, “Cardiac allograft vasculopathy: current knowledge and future direction,” Clinical Transplantation, vol. 25, no. 2, pp. 175–184, 2011.
[44]
M. R. Mehra, P. A. Uber, S. Potluri, H. O. Ventura, R. L. Scott, and M. H. Park, “Usefulness of an elevated B-type natriuretic peptide to predict allograft failure, cardiac allograft vasculopathy, and survival after heart transplantation,” American Journal of Cardiology, vol. 94, no. 4, pp. 454–458, 2004.
[45]
T. Seto, S. Kamijo, Y. Wada et al., “Upregulation of the apoptosis-related inflammasome in cardiac allograft rejection,” Journal of Heart and Lung Transplantation, vol. 29, no. 3, pp. 352–359, 2010.
[46]
M. Ramsperger-Gleixner, B. M. Spriewald, R. Tandler, et al., “Increased transcript levels of TNF-α, TGF-β, and granzyme B in endomyocardial biopsies correlate with allograft rejection,” Experimental and Clinical Transplantation, vol. 9, no. 6, pp. 387–392, 2011.
[47]
Y. F. Meirovich, J. P. Veinot, M. L. K. de Bold et al., “Relationship between natriuretic peptides and inflammation: proteomic evidence obtained during acute cellular cardiac allograft rejection in humans,” Journal of Heart and Lung Transplantation, vol. 27, no. 1, pp. 31–37, 2008.
[48]
N. M. Fahmy, M. H. Yamani, R. C. Starling et al., “Chemokine and receptor-gene expression during early and late acute rejection episodes in human cardiac allografts,” Transplantation, vol. 75, no. 12, pp. 2044–2047, 2003.
[49]
M. L. K. de Bold, A. Etchepare, A. Martinuk, and A. J. de Bold, “Cardiac hormones ANF and BNP modulate proliferation in the unidirectional mixed lymphocyte reaction,” Journal of Heart and Lung Transplantation, vol. 29, no. 3, pp. 323–326, 2010.
[50]
A. H. Bruggink, N. de Jonge, M. F. M. van Oosterhout et al., “Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device,” Journal of Heart and Lung Transplantation, vol. 25, no. 2, pp. 174–180, 2006.
[51]
V. Chiurchiù, V. Izzi, F. D'Aquilio, F. Carotenuto, P. Di Nardo, and P. M. Baldini, “Brain natriuretic peptide (BNP) regulates the production of inflammatory mediators in human THP-1 macrophages,” Regulatory Peptides, vol. 148, no. 1–3, pp. 26–32, 2008.
[52]
S. M. Shaw, W. R. Critchley, C. M. Puchalka, S. G. Williams, N. Yonan, and J. E. Fildes, “Brain natriuretic peptide induces CD8+ T cell death via a caspase 3 associated pathway—implications following heart transplantation,” Transplant Immunology, vol. 26, no. 2-3, pp. 119–122, 2012.
[53]
J. Solus, C. P. Chung, A. Oeser et al., “Amino-terminal fragment of the prohormone brain-type natriuretic peptide in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 58, no. 9, pp. 2662–2669, 2008.
[54]
D. J. Armstrong, P. V. Gardiner, and M. J. O'Kane, “Rheumatoid arthritis patients with active disease and no history of cardiac pathology have higher brain natriuretic peptide (BNP) levels than patients with inactive disease or healthy control subjects,” Ulster Medical Journal, vol. 79, no. 2, pp. 82–84, 2010.
[55]
K. K. Ma, T. Ogawa, and A. J. de Bold, “Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 4, pp. 505–513, 2004.
[56]
Q. He and M. C. LaPointe, “Interleukin-1β regulation of the human brain natriuretic peptide promoter involves Ras-, Rac-, and p38 kinase-dependent pathways in cardiac myocytes,” Hypertension, vol. 33, no. 1, part 2, pp. 283–289, 1999.
[57]
W. J. Xia, Y. Y. Huang, Y. L. Chen, S. L. Chen, and J. G. He, “Acute myocardial ischemia directly modulates the expression of brain natriuretic peptide at the transcriptional and translational levels via inflammatory cytokines,” European Journal of Pharmacology, vol. 670, no. 1, pp. 7–12, 2011.
[58]
M. Kodama, S. Zhang, H. Hanawa, and A. Shibata, “Immunohistochemical characterization of infiltrating mononuclear cells in the rat heart with experimental autoimmune giant cell myocarditis,” Clinical and Experimental Immunology, vol. 90, no. 2, pp. 330–335, 1992.
[59]
Y. Okura, T. Yamamoto, S. Goto et al., “Characterization of cytokine and iNOS mRNA expression in situ during the course of experimental autoimmune myocarditis in rats,” Journal of Molecular and Cellular Cardiology, vol. 29, no. 2, pp. 491–502, 1997.
[60]
T. Ogawa, J. P. Veinot, M. L. K. de Bold, T. Georgalis, and A. J. de Bold, “Angiotensin II receptor antagonism reverts the selective cardiac BNP upregulation and secretion observed in myocarditis,” American Journal of Physiology, vol. 294, no. 6, pp. H2596–H2603, 2008.
[61]
R. Shor, Y. Rozenman, A. Bolshinsky et al., “BNP in septic patients without systolic myocardial dysfunction,” European Journal of Internal Medicine, vol. 17, no. 8, pp. 536–540, 2006.
[62]
R. Witthaut, C. Busch, P. Fraunberger et al., “Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction,” Intensive Care Medicine, vol. 29, no. 10, pp. 1696–1702, 2003.
[63]
N. I. Nikolaou, C. Goritsas, M. Dede et al., “Brain natriuretic peptide increases in septic patients without severe sepsis or shock,” European Journal of Internal Medicine, vol. 18, no. 7, pp. 535–541, 2007.
[64]
G. Chua and L. Kang-Hoe, “Marked elevations in N-terminal brain natriuretic peptide levels in septic shock,” Critical Care, vol. 8, no. 4, pp. R248–R250, 2004.
[65]
K. J. Hartemink, J. W. R. Twisk, and A. B. J. Groeneveld, “High circulating N-terminal pro-B-type natriuretic peptide is associated with greater systolic cardiac dysfunction and nonresponsiveness to fluids in septic versus nonseptic critically ill patients,” Journal of Critical Care, vol. 26, no. 1, pp. 108.e1–108.e8, 2011.
[66]
J. Charpentier, C. E. Luyt, Y. Fulla et al., “Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis,” Critical Care Medicine, vol. 32, no. 3, pp. 660–665, 2004.
[67]
A. Roch, “What does high NT-proBNP mean in septic shock patients? A part of the puzzle,” Critical Care, vol. 11, no. 2, article 122, 2007.
[68]
M. Maeder, P. Ammann, W. Kiowski, and H. Rickli, “B-type natriuretic peptide in patients with sepsis and preserved left ventricular ejection fraction,” European Journal of Heart Failure, vol. 7, no. 7, pp. 1164–1167, 2005.
[69]
S. C. Burjonroppa, A. T. Tong, L. C. Xiao, M. M. Johnson, S. W. Yusuf, and D. J. Lenihan, “Cancer patients with markedly elevated B-type natriuretic peptide may not have volume overload,” American Journal of Clinical Oncology, vol. 30, no. 3, pp. 287–293, 2007.
[70]
G. Vila, M. Resl, D. Stelzeneder et al., “Plasma NT-proBNP increases in response to LPS administration in healthy men,” Journal of Applied Physiology, vol. 105, no. 6, pp. 1741–1745, 2008.
[71]
T. Yucel, D. Memi?, B. Karamanlioglu, N. Süt, and M. Yuksel, “The prognostic value of atrial and brain natriuretic peptides, troponin I and C-reactive protein in patients with sepsis,” Experimental and Clinical Cardiology, vol. 13, no. 4, pp. 183–188, 2008.
[72]
M. Brueckmann, G. Huhle, S. Lang et al., “Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis,” Circulation, vol. 112, no. 4, pp. 527–534, 2005.
[73]
T. Ogawa and A. J. de Bold, “Uncoordinated regulation of atrial natriuretic factor and brain natriuretic peptide in lipopolysaccharide-treated rats,” Biomarkers, vol. 17, no. 2, pp. 140–149, 2012.
[74]
M. Testa, M. Yeh, P. Lee et al., “Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension,” Journal of the American College of Cardiology, vol. 28, no. 4, pp. 964–971, 1996.