全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epigenetically Mediated Pathogenic Effects of Phenanthrene on Regulatory T Cells

DOI: 10.1155/2013/967029

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phenanthrene (Phe), a polycyclic aromatic hydrocarbon (PAH), is a major constituent of urban air pollution. There have been conflicting results regarding the role of other AhR ligands 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) and 6-formylindolo [3,2-b]carbazole (FICZ) in modifying regulatory T cell populations (Treg) or T helper (Th)17 differentiation, and the effects of Phe have been understudied. We hypothesized that different chemical entities of PAH induce Treg to become either Th2 or Th17 effector T cells through epigenetic modification of FOXP3. To determine specific effects on T cell populations by phenanthrene, primary human Treg were treated with Phe, TCDD, or FICZ and assessed for function, gene expression, and phenotype. Methylation of CpG sites within the FOXP3 locus reduced FOXP3 expression, leading to impaired Treg function and conversion of Treg into a CD4+CD25lo Th2 phenotype in Phe-treated cells. Conversely, TCDD treatment led to epigenetic modification of IL-17A and conversion of Treg to Th17 T cells. These findings present a mechanism by which exposure to AhR-ligands mediates human T cell responses and begins to elucidate the relationship between environmental exposures, immune modulation, and initiation of human disease. 1. Introduction The aryl hydrocarbon receptor (AhR) is a ligand-activated member of the basic-helix-loop-helix family of transcription factors that acts as a sensor for a wide variety of environmental air pollutants, including polycyclic aryl hydrocarbons (PAHs) [1–3]. Recent studies suggest that AhR signaling also has a role in development and immune modulation (reviewed in [4]). Ligand-activation of AhR plays a role in the differentiation of mouse Treg and Th17 cells with implications in autoimmune disease pathogenesis; however, there is controversy as to whether specific AhR-ligands regulate murine Treg versus T helper (Th)17 cell differentiation [5–10]. TCDD has been shown to induce Treg in mouse models [5, 9]. Additional complicating factors for understanding the mechanism of AhR-ligand-mediated effects on T cell immune function include the tissue and species specificity, in addition to the ligand-specific differences in the structure, function, and mechanism of action of the AhR itself [6]. Currently, there is limited information as to how AhR ligands modulate human T cells, the expression of AhR by different human T cell subsets, and the mechanisms by which AhR agonists change human T cell populations. A fuller understanding of these mechanistic pathways and effects of AhR-ligands on human T cells could

References

[1]  S. Vardoulakis, Z. Chalabi, T. Fletcher, C. Grundy, and G. S. Leonardi, “Impact and uncertainty of a traffic management intervention: population exposure to polycyclic aromatic hydrocarbons,” Science of the Total Environment, vol. 394, no. 2-3, pp. 244–251, 2008.
[2]  G. D'Amato, “Environmental urban factors (air pollution and allergens) and the rising trends in allergic respiratory diseases,” Allergy, vol. 57, supplement 72, pp. 30–33, 2002.
[3]  T. V. Beischlag, J. L. Morales, B. D. Hollingshead, and G. H. Perdew, “The aryl hydrocarbon receptor complex and the control of gene expression,” Critical Reviews in Eukaryotic Gene Expression, vol. 18, no. 3, pp. 207–250, 2008.
[4]  E. A. Stevens, J. D. Mezrich, and C. A. Bradfield, “The aryl hydrocarbon receptor: a perspective on potential roles in the immune system,” Immunology, vol. 127, no. 3, pp. 299–311, 2009.
[5]  F. J. Quintana, A. S. Basso, A. H. Iglesias et al., “Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor,” Nature, vol. 453, no. 7191, pp. 65–71, 2008.
[6]  M. S. Denison, A. A. Soshilov, G. He, D. E. DeGroot, and B. Zhao, “Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor,” Toxicological Sciences, vol. 124, pp. 1–22.
[7]  E. Hauben, S. Gregori, E. Draghici et al., “Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells,” Blood, vol. 112, no. 4, pp. 1214–1222, 2008.
[8]  A. Kimura, T. Naka, K. Nohara, Y. Fujii-Kuriyama, and T. Kishimoto, “Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9721–9726, 2008.
[9]  M. Veldhoen, K. Hirota, A. M. Westendorf et al., “The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins,” Nature, vol. 453, no. 7191, pp. 106–109, 2008.
[10]  L. Zhang, J. Ma, M. Takeuchi et al., “Suppression of experimental autoimmune uveoretinitis by inducing differentiation of regulatory T cells via activation of aryl hydrocarbon receptor,” Investigative Ophthalmology and Visual Science, vol. 51, no. 4, pp. 2109–2117, 2010.
[11]  H. G. Margolis, J. K. Mann, F. W. Lurmann et al., “Altered pulmonary function in children with asthma associated with highway traffic near residence,” International Journal of Environmental Health Research, vol. 19, no. 2, pp. 139–155, 2009.
[12]  R. McConnell, T. Islam, K. Shankardass et al., “Childhood incident asthma and traffic-related air pollution at home and school,” Environmental Health Perspectives, vol. 118, no. 7, pp. 1021–1026, 2010.
[13]  T. Islam, W. J. Gauderman, K. Berhane et al., “Relationship between air pollution, lung function and asthma in adolescents,” Thorax, vol. 62, no. 11, pp. 957–963, 2007.
[14]  W. J. Gauderman, E. Avol, F. Gilliland et al., “The effect of air pollution on lung development from 10 to 18 years of age,” New England Journal of Medicine, vol. 351, no. 11, pp. 1057–1067, 2004.
[15]  S. H. Downs, C. Schindler, L. J. Liu et al., et al., “Reduced exposure to PM10 and attenuated age-related decline in lung function,” The New England Journal of Medicine, vol. 357, pp. 2338–2347, 2007.
[16]  V. Morgenstern, A. Zutavern, J. Cyrys et al., et al., “Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children,” American Journal of Respiratory and Critical Care Medicine, vol. 177, pp. 1331–1337, 2008.
[17]  E. Nordling, N. Berglind, E. Melén et al., “Traffic-related air pollution and childhood respiratory symptoms, function and allergies,” Epidemiology, vol. 19, no. 3, pp. 401–408, 2008.
[18]  F. D. Finkelman, M. Yang, T. Orekhova et al., “Diesel exhaust particles suppress in vivo IFN-γ production by inhibiting cytokine effects on NK and NKT cells,” Journal of Immunology, vol. 172, no. 6, pp. 3808–3813, 2004.
[19]  R. L. Miller and S. M. Ho, “Environmental epigenetics and asthma: current concepts and call for studies,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 6, pp. 567–573, 2008.
[20]  S. M. Ho, “Environmental epigenetics of asthma: an update,” Journal of Allergy and Clinical Immunology, vol. 126, no. 3, pp. 453–465, 2010.
[21]  S. E. Allan, A. N. Alstad, N. Merindol et al., “Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3,” Molecular Therapy, vol. 16, no. 1, pp. 194–202, 2008.
[22]  J. Huehn, J. K. Polansky, and A. Hamann, “Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?” Nature Reviews Immunology, vol. 9, no. 2, pp. 83–89, 2009.
[23]  N. P. Singh, M. Nagarkatti, and P. S. Nagarkatti, “Primary peripheral T cells become susceptible to 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated apoptosis in vitro upon activation and in the presence of dendritic cells,” Molecular Pharmacology, vol. 73, no. 6, pp. 1722–1735, 2008.
[24]  J. K. Polansky, K. Kretschmer, J. Freyer et al., “DNA methylation controls FOXP3 gene expression,” European Journal of Immunology, vol. 38, no. 6, pp. 1654–1663, 2008.
[25]  G. Lal, N. Zhang, W. Van Der Touw et al., “Epigenetic regulation of FOXP3 expression in regulatory T cells by DNA methylation,” Journal of Immunology, vol. 182, no. 1, pp. 259–273, 2009.
[26]  Y. Y. Wan and R. A. Flavell, “Regulatory T-cell functions are subverted and converted owing to attenuated FOXP3 expression,” Nature, vol. 445, no. 7129, pp. 766–770, 2007.
[27]  N. P. Singh, U. P. Singh, B. Singh, R. L. Price, M. Nagarkatti, and P. S. Nagarkatti, “Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FOXP3 and IL-17 expression and amelioration of experimental colitis,” PLoS One, vol. 6, Article ID e23522.
[28]  L. Stejskalova, Z. Dvorak, and P. Pavek, “Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art,” Current Drug Metabolism, vol. 12, no. 2, pp. 198–212, 2011.
[29]  K. Nadeau, C. McDonald-Hyman, E. M. Noth et al., “Ambient air pollution impairs regulatory T-cell function in asthma,” Journal of Allergy and Clinical Immunology, vol. 126, no. 4, article e10, pp. 845–852, 2010.
[30]  K. D. Nguyen, A. Fohner, J. D. Booker, C. Dong, A. M. Krensky, and K. C. Nadeau, “XCL1 enhances regulatory activities of CD4+CD25 highCD127low/- T cells in human allergic asthma,” Journal of Immunology, vol. 181, no. 8, pp. 5386–5395, 2008.
[31]  K. D. Nguyen, C. Vanichsarn, A. Fohner, and K. C. Nadeau, “Selective deregulation in chemokine signaling pathways of CD4+CD25hiCD127lo/- regulatory T cells in human allergic asthma,” Journal of Allergy and Clinical Immunology, vol. 123, no. 4, article e910, pp. 933–939, 2009.
[32]  S. L. Bailey-Bucktrout and J. A. Bluestone, “Regulatory T cells: stability revisited,” Trends in Immunology, vol. 32, pp. 301–306.
[33]  X. Zhou, S. Bailey-Bucktrout, L. T. Jeker, and J. A. Bluestone, “Plasticity of CD4+FOXP3+ T cells,” Current Opinion in Immunology, vol. 21, no. 3, pp. 281–285, 2009.
[34]  C. C. Diaconu, A. I. Neagu, R. Lungu et al., “Plasticity of regulatory T cells under cytokine pressure,” Roumanian Archives of Microbiology and Immunology, vol. 69, no. 4, pp. 190–196, 2010.
[35]  Z. Dagher, G. Gar?on, S. Billet et al., “Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture,” Toxicology, vol. 225, no. 1, pp. 12–24, 2006.
[36]  G. Garcia, V. Godot, and M. Humbert, “New chemokine targets for asthma therapy,” Current Allergy and Asthma Reports, vol. 5, no. 2, pp. 155–160, 2005.
[37]  G. Garcia, M. Humbert, F. Capel et al., “Chemokine receptor expression on allergen-specific T cells in asthma and allergic bronchopulmonary aspergillosis,” Allergy, vol. 62, no. 2, pp. 170–177, 2007.
[38]  J. A. Gonzalo, Y. Qiu, J. M. Lora et al., “Coordinated involvement of mast cells and T cells in allergic mucosal inflammation: critical role of the CC chemokine ligand 1:CCR8 axis,” Journal of Immunology, vol. 179, no. 3, pp. 1740–1750, 2007.
[39]  C. M. Lloyd and S. M. Rankin, “Chemokines in allergic airway disease,” Current Opinion in Pharmacology, vol. 3, no. 4, pp. 443–448, 2003.
[40]  Z. Mikhak, M. Fukui, A. Farsidjani, B. D. Medoff, A. M. Tager, and A. D. Luster, “Contribution of CCR4 and CCR8 to antigen-specific TH2 cell trafficking in allergic pulmonary inflammation,” Journal of Allergy and Clinical Immunology, vol. 123, no. 1, e36, pp. 67–73, 2009.
[41]  F. Chédin, “The DNMT3 family of mammalian de novo DNA methyltransferases,” Progress in Molecular Biology and Translational Science, vol. 101, pp. 255–285, 2011.
[42]  R. Z. Jurkowska, T. P. Jurkowski, and A. Jeltsch, “Structure and function of mammalian DNA methyltransferases,” ChemBioChem, vol. 12, no. 2, pp. 206–222, 2011.
[43]  Z. M. Svedruzic, “Dnmt1 structure and function,” Progress in Molecular Biology and Translational Science, vol. 101, pp. 221–254.
[44]  S. Safe, “3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters,” Toxicological Sciences, vol. 117, no. 1, pp. 1–3, 2010.
[45]  J. E. Lee and S. Safe, “3′, 4′-Dimethoxyflavone as an aryl hydrocarbon receptor antagonist in human breast cancer cells,” Toxicological Sciences, vol. 58, no. 2, pp. 235–242, 2000.
[46]  T. Korn, “How T cells take developmental decisions by using the aryl hydrocarbon receptor to sense the environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 48, pp. 20597–20598, 2010.
[47]  L. Hansmann, C. Schmidl, J. Kett et al., “Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression,” The Journal of Immunology, vol. 188, pp. 1275–1282.
[48]  H. Imataka, K. Sogawa, K. Yasumoto et al., “Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene,” The EMBO Journal, vol. 11, no. 10, pp. 3663–3671, 1992.
[49]  P. P. Ho and L. Steinman, “The aryl hydrocarbon receptor: a regulator of Th17 and Treg cell development in disease,” Cell Research, vol. 18, no. 6, pp. 605–608, 2008.
[50]  S. Ahmed, E. Valen, A. Sandelin, and J. Matthews, “Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters,” Toxicological Sciences, vol. 111, no. 2, pp. 254–266, 2009.
[51]  J. Matthews, B. Wihlén, J. Thomsen, and J. A. Gustafsson, “Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor α to 2,3,7,8-tetrachlorodibenzo-p-dioxin- responsive promoters,” Molecular and Cellular Biology, vol. 25, no. 13, pp. 5317–5328, 2005.
[52]  J. Mestas and C. C. W. Hughes, “Of mice and not men: differences between mouse and human immunology,” Journal of Immunology, vol. 172, no. 5, pp. 2731–2738, 2004.
[53]  B. Stockinger, K. Hirota, J. Duarte, and M. Veldhoen, “External influences on the immune system via activation of the aryl hydrocarbon receptor,” Seminars in Immunology, vol. 23, no. 2, pp. 99–105, 2011.
[54]  B. Stockinger, M. Veldhoen, and K. Hirota, “Modulation of Th17 development and function by activation of the aryl hydrocarbon receptor—the role of endogenous ligands,” European Journal of Immunology, vol. 39, no. 3, pp. 652–654, 2009.
[55]  M. Veldhoen, “A toxin-sensitive receptor able to reduce immunopathology,” Nature Immunology, vol. 11, no. 9, pp. 779–781, 2010.
[56]  M. Veldhoen and J. H. Duarte, “The aryl hydrocarbon receptor: fine-tuning the immuneresponse,” Current Opinion in Immunology, vol. 22, pp. 747–752.
[57]  F. Perera, W. Y. Tang, J. Herbstman et al., “Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma,” PLoS ONE, vol. 4, no. 2, Article ID e4488, 2009.
[58]  D. Hartl, B. Koller, A. T. Mehlhorn et al., “Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells inpediatric asthma,” Journal of Allergy and Clinical Immunology, vol. 119, no. 5, pp. 1258–1266, 2007.
[59]  L. K. Poulsen and L. Hummelshoj, “Triggers of IgE class switching and allergy development,” Annals of Medicine, vol. 39, no. 6, pp. 440–456, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133