Aloe vera, a common ingredient in cosmetics, is increasingly being consumed as a beverage supplement. Although consumer interest in aloe likely stems from its association with several health benefits, a concern has also been raised by a National Toxicology Program Report that a nondecolorized whole leaf aloe vera extract taken internally by rats was associated with intestinal mucosal hyperplasia and ultimately malignancy. We tested a decolorized whole leaf (DCWL) aloe vera, treated with activated charcoal to remove the latex portion of the plant, for genotoxicity in bacteria, acute/subacute toxicity in B6C3F1 mice, and subchronic toxicity in F344 rats. We found this DCWL aloe vera juice to be nongenotoxic in histidine reversion and DNA repair assays. Following acute administration, mice exhibited no adverse signs at 3- or 14-day evaluation periods. When fed to male and female F344 rats over 13 weeks, DCWL aloe led to no toxicity as assessed by behavior, stools, weight gain, feed consumption, organ weights, and hematologic or clinical chemistry profiles. These rats had intestinal mucosal morphologies—examined grossly and microscopically—that were similar to controls. Our studies show that oral administration of this DCWL aloe juice has a different toxicology profile than that of the untreated aloe juice at exposures up to 13 weeks. 1. Introduction Aloe vera is a common ingredient in cosmetics, skin care products, and increasingly, beverages and food products [1]. Recent consumer interest in aloe beverages may stem from the association of aloe juice with a variety of both anecdotal and experimental research-supported health benefits including the prevention or treatment of various tumors [2, 3], arthritis [4], diabetes [5], enhanced immunity [6], and decreased cholesterol levels [7]. Aloe juice is approximately 99% water [8] and the remainder consists of minerals, vitamins, polysaccharides, lipids, phenolic compounds, and organic acids. According to the International Aloe Scientific Council, the aloe leaf can be processed into two types of juices for commercial use: inner leaf gel juice and decolorized whole leaf juice [9]. Inner leaf gel juice is produced from only the gelatinous fillet of the leaf. Decolorized whole leaf juice is produced by grinding the leaf followed by treatment of extracted juice with activated charcoal to remove aloe “latex” [10]. Charcoal treatment is necessary since the latex, which exists as a separate liquid between the outer rind and inner fillet gel, contains bitter phenolic molecules including anthraquinone C- and
References
[1]
S. Almendarez, Aloe Vera: from Standards to Science, 2012, http://www.iasc.org/.
[2]
J. G. De Melo, A. G. Santos, E. L. C. De Amorim, S. C. D. Nascimento, and U. P. De Albuquerque, “Medicinal plants used as antitumor agents in Brazil: an ethnobotanical approach,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 365359, 14 pages, 2011.
[3]
P. L. Kuo, T. C. Lin, and C. C. Lin, “The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines,” Life Sciences, vol. 71, no. 16, pp. 1879–1892, 2002.
[4]
D. Cowan, “Oral Aloe vera as a treatment for osteoarthritis: a summary,” British Journal of Community Nursing, vol. 15, no. 6, pp. 280–282, 2010.
[5]
M. Tanaka, E. Misawa, Y. Ito et al., “Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds,” Biological and Pharmaceutical Bulletin, vol. 29, no. 7, pp. 1418–1422, 2006.
[6]
P. Sawant, “Aloe vera juice: the magic potion,” The Times of India, 2012, http://articles.timesofindia.indiatimes.com/2012/jun/26.
[7]
H. F. Huseini, S. Kianbakht, R. Hajiaghaee, and F. H. Dabaghian, “Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial,” Planta Medica, vol. 78, no. 4, pp. 311–316, 2012.
[8]
J. H. Hamman, “Composition and applications of Aloe vera leaf gel,” Molecules, vol. 13, no. 8, pp. 1599–1616, 2008.
[9]
International Aloe Science Council, Position Paper of the International Aloe Scientific Council on The National Toxicology Program Study of Orally-Ingested Aloe Vera, 2011, http://www.iasc.org/pdfs/11_0427_Position_Statement_NTP_CONSUMERS.pdf.
[10]
National Toxicology Program Report, “Toxicology and Carcinogenesis Studies of a Nondecolorized Whole Leaf Extract of Aloe Barbadensis Miller (aloe vera) in F344/N Rats and B6C3F1 Mice (drinking water study),” NTP Technical Report Series 577, NIH Publication, 2011.
[11]
M. K. Park, “Analysis of 13 phenolic compounds in Aloe species by high performance liquid chromatography,” Phytochemical Analysis, vol. 9, no. 4, pp. 186–191, 1998.
[12]
L. E. Sendelbach, “A review of the toxicity and carcinogenicity of anthraquinone derivatives,” Toxicology, vol. 57, no. 3, pp. 227–240, 1989.
[13]
D. K. Patel, K. Patel, and V. Tahilyani, “Barbaloin: a concise report of its pharmacological and analytical aspects,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 10, pp. 835–838, 2012.
[14]
National Toxicology Program, “NTP toxicology and carcinogenesis studies of EMODIN (CAS NO. 518-82-1) feed studies in F344/N rats and B6C3F1 mice,” National Toxicology Program Technical Report Series, no. 493, pp. 1–278, 2001.
[15]
S. O. Müller, I. Eckert, W. K. Lutz, and H. Stopper, “Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: topoisomerase II mediated?” Mutation Research, vol. 371, no. 3-4, pp. 165–173, 1996.
[16]
J. Westendorf, H. Marquardt, B. Poginsky, M. Dominiak, J. Schmidt, and H. Marquardt, “Genotoxicity of naturally occurring hydroxyanthraquinones,” Mutation Research, vol. 240, no. 1, pp. 1–12, 1990.
[17]
A. H. Shah, S. Qureshi, M. Tariq, and A. M. Ageel, “Toxicity studies on six plants used in the traditional Arab system of medicine,” Phytotherapy Research, vol. 3, no. 1, pp. 25–29, 1989.
[18]
L. D. Williams, G. A. Burdock, E. Shin et al., “Safety studies conducted on a proprietary high-purity Aloe vera inner leaf fillet preparation, Qmatrix,” Regulatory Toxicology and Pharmacology, vol. 57, no. 1, pp. 90–98, 2010.
D. Powell, NTP and the Need for Crisis Management, 2010, http://www.iasc.org/InsideAloe/10_0218_IAO.pdf.
[24]
S. A. Ross, M. A. Elsohly, and S. P. Wilkins, “Quantitative analysis of Aloe vera mucilaginous polysaccharide in commercial Aloe vera products,” Journal of AOAC International, vol. 80, no. 2, pp. 455–457, 1997.
[25]
N. Pugh, S. A. Ross, M. A. ElSohly, and D. S. Pasco, “Characterization of aloeride, a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity,” Journal of Agricultural and Food Chemistry, vol. 49, no. 2, pp. 1030–1034, 2001.
[26]
G. Gillis, “The original superjuice—inside/out studies of the health benefits of Aloe vera,” College of Science and Technology, vol. 9, pp. 60–63, 2009.
[27]
R. D. Mosteller, “Simplified calculation of body-surface area,” The New England Journal of Medicine, vol. 317, no. 17, article 1098, 1987.
[28]
Y. Ikeno, G. B. Hubbard, S. Lee, B. P. Yu, and J. T. Herlihy, “The influence of long-term Aloe vera ingestion on age-related disease in male Fischer 344 rats,” Phytotherapy Research, vol. 16, no. 8, pp. 712–718, 2002.
[29]
M. Tanaka, M. Yamada, T. Toida, and K. Iwatsuki, “Safety evaluation of supercritical carbon dioxide extract of Aloe vera gel,” Journal of Food Science, vol. 77, no. 1, pp. T2–T9, 2012.
[30]
R. Maharjan, P. Nagar, and L. Nampoothiri, “Effect of Aloe barbadensis Mill. Formulation on Letrozole induced polycystic ovarian syndrome rat model,” Journal of Ayurveda and Integrative Medicine, vol. 1, no. 4, pp. 273–279, 2010.
[31]
B. O. Lim, N. S. Seong, R. W. Choue et al., “Efficacy of dietary Aloe vera supplementation on hepatic cholesterol and oxidative status in aged rats,” Journal of Nutritional Science and Vitaminology, vol. 49, no. 4, pp. 292–296, 2003.
[32]
S. Rajasekaran, K. Ravi, K. Sivagnanam, and S. Subramanian, “Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 3, pp. 232–237, 2006.
[33]
D. Brusick and U. Mengs, “Assessment of the genotoxic risk from laxative senna products,” Environmental and Molecular Mutagenesis, vol. 29, no. 1, pp. 1–9, 1997.
[34]
T. T. Kararli, “Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals,” Biopharmaceutics and Drug Disposition, vol. 16, no. 5, pp. 351–380, 1995.
[35]
R. F. Wang, W. W. Cao, and C. E. Cerniglia, “PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples,” Applied and Environmental Microbiology, vol. 62, no. 4, pp. 1242–1247, 1996.
[36]
M. Hattori, T. Kanda, Y. Z. Shu, T. Akao, K. Kobashi, and T. Namba, “Metabolism of barbaloin by intestinal bacteria,” Chemical and Pharmaceutical Bulletin, vol. 36, no. 11, pp. 4462–4466, 1988.
[37]
A. A. Salyers, S. E. H. West, J. R. Vercellotti, and T. D. Wilkins, “Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon,” Applied and Environmental Microbiology, vol. 34, no. 5, pp. 529–533, 1977.