全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

DOI: 10.1155/2013/870628

Full-Text   Cite this paper   Add to My Lib

Abstract:

Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9) and glutathione reductase (GR, EC 1.6.4.2) activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96?h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96?h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr) was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress. 1. Introduction Toxic hepatitis is one of the most widespread pathology of the liver among clinic diseases of internal organs. The accumulation of different xenobiotics can promote development of the disease. High hepatotropic effect is attributed to tetrachloromethane (CCl4), which its biotransformation is associated with the functioning of cytochrome P450-dependent monooxygenase system and free radicals production [1]. This process is associated with disruption of the antioxidant protection system of the liver tissue and ultimately leads to an oxidative stress [2, 3]. Free radical (FR) processes play an extremely important role in cell activity. However, the intensification of free radical oxidation (FRO) is a key mechanism involved in cellular pathology and apoptosis. The FRO processes are controlled by the antioxidant system (AOS). In case of superfluous generation of reactive oxygen species (ROS) resulting from ionizing radiation, infectious agents, toxins, ischemia, and other pathological factors, the FR process becomes a cascade of events that leads to lipid-lipid and protein-lipid

References

[1]  A. Archakov and I. Karuzina, “Oxidation of foreign compounds and toxicology problems,” Vestnik Akademii Medizinskih Nunk SSSR, vol. 1, pp. 14–24, 1988.
[2]  N. Zenkov, LankinV, and E. Menshikov, Oxidative Stress. Biochemicals and Pathophysiologicals Aspects, MAIK, Moscow, Russia, 2001.
[3]  S. S. Popov, A. N. Pashkov, T. N. Popova, A. V. Semenikhina, and T. I. Rakhmanova, “Melatonin as a corrector of free radical oxidation processes during toxic damage of liver in rat,” Eksperimental'naya i Klinicheskaya Farmakologiya, vol. 70, no. 1, pp. 48–51, 2007.
[4]  P. Gulak, A. Dudchenko, and V. Zaycev, Hepatocyte: The Functional and Metabolic Properties, Moscow, Russia, 1985.
[5]  A. N. Pashkov, S. S. Popov, A. V. Semenikhina, and T. I. Rakhmanova, “Glutathione system state and activity of some NADPH-producing enzymes in rats liver under melatonin action at norm and toxic hepatitis,” Bulletin of Experimental Biology and Medicine, vol. 139, no. 5, pp. 520–524, 2005.
[6]  O. Kartashova and A. Blyuger, “Simulation of pathological processes in the liver,” Riga: Zvaygzne, p. 180, 1975.
[7]  Y. Kaurov, G. Boyarinov, and V. Smirnov, “How to create a model of hepatitis and cirrhosis of the liver of mammals, Federal service on intellectual property, patent and trade marks,” 1996, Patent 94026117 RF, MKI G09B23/28, http://www.fips.ru/cdfi/Fips2009.dll/CurrDoc?SessionKey=I26EHSFA6CX7DRO1LN5J&GotoDoc=1&Query=1.
[8]  V. Sidorova, Z. Ryabinin, and E. Leikin, Liver Regeneration in Mammals, Medicine, Leningrad Branch, Leningrad, Russia, 1966.
[9]  N. Fedorova, State of the system of glutathione peroxidase-glutathione reductase in the stimulated to regenerate body and its role in cell proliferation [Ph.D. thesis], Library of Voronezh State University, 1999.
[10]  I. D. Stalnaya, Modern Methods in Biochemistry, Orekhovich V.N. Pub. Medicine, Moscow, Russia, 1977.
[11]  M. W. Pfaffl, G. W. Horgan, and L. Dempfle, “Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR,” Nucleic Acids Research, vol. 30, no. 9, article e36, 2002.
[12]  S. Lapach, A. Chubenko, and P. Babich, Statistical Methods in Biomedical Research Using Excel Software, Morion, Kiev, Russia, 2001.
[13]  K. Storey, “Oxidative stress: animal adaptations in nature,” Brazilian Journal of Medical and Biological Research, vol. 29, pp. 1715–1733, 1996.
[14]  S. Orrenius, D. J. McConkey, G. Bellomo, and P. Nicotera, “Role of Ca2+ in toxic cell killing,” Trends in Pharmacological Sciences, vol. 10, no. 7, pp. 281–285, 1989.
[15]  M. D. Geeraerts, M. F. Ronveaux-Dupal, J. J. Lemasters, and B. Herman, “Cytosolic free Ca2+ and proteolysis in lethal oxidative injury in endothelial cells,” American Journal of Physiology, vol. 261, no. 5, pp. C889–C896, 1991.
[16]  A. Bindoli, “Lipid peroxidation in mitochondria,” Free Radical Biology and Medicine, vol. 5, no. 4, pp. 247–261, 1988.
[17]  Y. Kunio, S. Komura, N. Komura, H. Abe, H. Konishi, and S. Arichi, “Serum lipid peroxide levels in rats with inherited cataracts,” Journal of Applied Physiology, vol. 7, pp. 202–206, 1985.
[18]  C. R. Wade, P. G. Jackson, J. Highton, and A. M. Van Rij, “Lipid peroxidation and malondialdehyde in the synovial fluid and plasma of patients with rheumatoid arthritis,” Clinica Chimica Acta, vol. 164, no. 3, pp. 245–250, 1987.
[19]  B. Halliwell and J. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, UK, 1989.
[20]  A. Jain, I. Rieger, M. Rohr, and A. Schrader, “Antioxidant efficacy on human skin in vivo investigated by UVA-induced chemiluminescence decay analysis via induced chemiluminescence of human skin,” Skin Pharmacology and Physiology, vol. 23, no. 5, pp. 266–272, 2010.
[21]  A. Lukaszewicz-Hussain and J. Moniuszko-Jakoniuk, “Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide,” Polish Journal of Environmental Studies, vol. 13, no. 3, pp. 303–309, 2004.
[22]  A. Alhassan, M. Sule, S. Aliyu, and M. Aliyu, “Ideal hepatotoxicity model in rats using Carbon Tetrachloride (CCl4),” Bayero Journal of Pure and Applied Sciences, vol. 2, no. 2, pp. 185–187, 2009.
[23]  G. A. Clawson, “Mechanisms of carbon tetrachloride hepatotoxicity,” Pathology and Immunopathology Research, vol. 8, pp. 104–112, 1989.
[24]  R. O. Recknagel, E. A. Glende, J. A. Dolak, and R. L. Waller, “Mechanisms of carbon tetrachloride toxicity,” Pharmacology and Therapeutics, vol. 43, no. 1, pp. 139–154, 1989.
[25]  H. S. Lee, L. Li, H. K. Kim, et al., “The protective effects of Curcuma longa linn. extract on carbon tetrachloride-induced hepatotoxicity in rats via upregulation of Nrf2,” Journal of Microbiology and Biotechnology, vol. 20, no. 9, pp. 1331–1338, 2010.
[26]  G. M. Adamson and R. E. Billings, “Tumor necrosis factor induced oxidative stress in isolated mouse hepatocytes,” Archives of Biochemistry and Biophysics, vol. 294, pp. 223–229, 1992.
[27]  A. Gruebele, K. Zawaski, and D. Kaplan, “Cytochrome P4502E1- and cytochrome P4502B1/2B2-catalyzed carbon tetrachloride metabolism: effects on signal transduction as demonstrated by altered immediate-early (c-Fos and c-Jun) gene expression and nuclear AP-1 and NF-kappa B transcription factor levels,” Drug Metabolism and Disposition, vol. 24, no. 1, pp. 15–22, 1996.
[28]  Z.-Z. Chen, Z.-L. Wang, and Y. C. - Deng, “(Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione protects rats from carbon tetrachloride-induced liver injury and fibrogenesis,” World Journal of Gastroenterology, vol. 18, no. 7, pp. 654–661, 2012.
[29]  Y. Huang, W. Li, and A. N. T. Kong, “Anti-oxidative stress regulator NF-E2-related factor 2 mediates the adaptive induction of antioxidant and detoxifying enzymes by lipid peroxidation metabolite 4-hydroxynonenal,” Cell & Bioscience, vol. 2, article 40, 2012.
[30]  S. W. Park, C. H. Lee, S. K. Yeong et al., “Protective effect of baicalin against carbon tetrachloride-induced acute hepatic injury in mice,” Journal of Pharmacological Sciences, vol. 106, no. 1, pp. 136–143, 2008.
[31]  Y. Yamada and N. Fausto, “Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor,” American Journal of Pathology, vol. 152, no. 6, pp. 1577–1589, 1998.
[32]  Q. Li, S. Salih, L. Shijun, R. Terry, O. Larry, and F. John, “GPx-1 gene delivery modulates NFκB activation following diverse environmental injuries through a specific subunit of the IKK complex no access,” Antioxidants & Redox Signaling, vol. 3, no. 3, pp. 415–432, 2001.
[33]  H. Nam, B. Choi, and J. Lee, “The role of nitric oxide in the particulate matter (PM2.5)-induced NFκB activation in lung epithelial cells,” Toxicology Letters, vol. 1, no. 2, pp. 95–102, 2004.
[34]  H. D. Zhao, F. Zhang, G. Shen et al., “Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway,” World Journal of Gastroenterology, vol. 16, no. 24, pp. 3002–3010, 2010.
[35]  D. Bloom, S. Dhakshinamoorthy, W. Wang, C. M. Celli, and A. K. Jaiswal, “Role of NF-E2 related factors in oxidative stress,” in Cell and Molecular Responses to Stress: Protein Adaptation and Signal Transduction, K. B. Storey and J. M. Storey, Eds., vol. 2, pp. 229–238, Elsevier, Amsterdam, The Netherlands, 2001.
[36]  K. Itoh, N. Wakabayashi, Y. Katoh et al., “Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain,” Genes and Development, vol. 13, no. 1, pp. 76–86, 1999.
[37]  S. Dhakshinamoorthy and A. K. Jaiswal, “Small Maf (MafG and MafK) proteins negatively regulate antioxidant response element-mediated expression and antioxidant induction of the NAD(P)H:Quinone oxidoreductase1 gene,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 40134–40141, 2000.
[38]  T. Nguyen, H. C. Huang, and C. B. Pickett, “Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 15466–15473, 2000.
[39]  R. Yu, C. Chen, Y. Y. Mo et al., “Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 39907–39913, 2000.
[40]  C. H. He, P. Gong, B. Hu et al., “Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation,” Journal of Biological Chemistry, vol. 276, no. 24, pp. 20858–20865, 2001.
[41]  H. C. Huang, T. Nguyen, and C. B. Pickett, “Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2,” Proceedings of the National Academy of Sciences of the USA, vol. 97, pp. 12475–12480, 2000.
[42]  M. K. Kwak, P. A. Egner, P. M. Dolan, et al., “Role of phase 2 enzyme induction in chemoprotection by dithiolethiones,” Mutation Research, vol. 480-481, pp. 305–315, 2001.
[43]  K. Itoh, T. Chiba, S. Takahashi et al., “An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements,” Biochemical and Biophysical Research Communications, vol. 236, no. 2, pp. 313–322, 1997.
[44]  C. J. Harvey, R. K. Thimmulappa, A. Singh et al., “Nrf2 regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress,” Free Radical Biology & Medicine, vol. 46, no. 4, pp. 443–453, 2009.
[45]  K. C. Wu, J. Y. Cui, and C. D. Klaassen, “Beneficial role of Nrf2 in regulating NADPH generation and consumption,” Toxicological Sciences, vol. 123, no. 2, pp. 590–600, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133