全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Differential Cytotoxicity Responses by Dog and Rat Hepatocytes to Phospholipogenic Treatments

DOI: 10.1155/2013/956404

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dog and rat hepatocytes were treated with phospholipogenics to identify the more sensitive species and to determine whether lysosomal or mitochondrial changes were the primary cause of cytotoxicity. Endpoints included cell death, lysosome membrane integrity, mitochondrial membrane polarization, and fluorescent phospholipid (NBD-PE). Dog cells exhibited lower survival IC50 values than did rat cells with all phospholipogenic treatments and exhibited a lower capacity to accumulate NBD-PE in 4 of 5 phospholipogenic test conditions. The lysosomal modulator Bafilomycin A1 (Baf) rescued dog cells from cytotoxicity caused by 3 phospholipogenic 5HT1b antagonists and hydroxychloroquine, but not fluoxetine, and rescued rat cells from hydroxychloroquine and NMTMB, a 5HT1b antagonist. Following NMTMB treatment, rat mitochondrial membrane hyperpolarization was observed at modestly cytotoxic concentrations and depolarization at the highest concentration. At the highest test concentration, lysosomal loss of acridine orange occurred by 30?min, mitochondrial polarity changes by 1?hr, and NBD-PE accumulation by 2?hr, respectively. Baf shifted mitochondrial polarity from a depolarized state to a hyperpolarized state. These data demonstrate that (a) dog hepatocytes were generally less capable of mounting an adaptive, protective phospholipidotic response than rat hepatocytes, (b) effects on mitochondria and survival were preventable by lysosomal protection, and (c) destabilizing changes in both organelles are involved causally in cytotoxicity. 1. Introduction Cationic amphiphilic drugs have chemical structures composed of hydrophilic and lipophilic regions, combined with a cationic amine group. Many cationic amphiphilic drugs are phospholipogenic (here defined as a compound that causes phospholipidosis (PLD)). A phospholipidotic response is characterized by the accumulation of phospholipids, lamellar bodies, and drug in cellular lysosomes and results from inhibited lysosomal phospholipase activity, either by binding of drug to phospholipids or by direct inhibition of phospholipases, and through alkalization of the normally acidic lysosomal mileu [1]. Lysosomotropic properties and accumulation potential of phospholipogenics are underscored by studies employing lysosomal modulators. The ionophore monensin, ammonium chloride (which causes direct lysosomal alkalinization), and the specific vacuolar sodium-potassium proton pump inhibitor Bafilomycin A1 (Baf) have been shown to abolish the pH gradient from cytoplasm (near neutral) to lysosome (low internal pH) and preclude

References

[1]  M. J. Reasor, K. L. Hastings, and R. G. Ulrich, “Drug-induced phospholipidosis: issues and future directions,” Expert Opinion on Drug Safety, vol. 5, no. 4, pp. 567–583, 2006.
[2]  W. A. Daniel and J. Wójcikowski, “The role of lysosomes in the cellular distribution of thioridazine and potential drug interactions,” Toxicology and Applied Pharmacology, vol. 158, no. 2, pp. 115–124, 1999.
[3]  W. A. Daniel, J. Wójcikowski, and A. Palucha, “Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping,” British Journal of Pharmacology, vol. 134, no. 4, pp. 807–814, 2001.
[4]  J. J. Shacka, B. J. Klocke, M. Shibata et al., “Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons,” Molecular Pharmacology, vol. 69, no. 4, pp. 1125–1136, 2006.
[5]  J. Kornhuber, A. W. Henkel, T. W. Groemer et al., “Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system,” Journal of Cellular Physiology, vol. 224, no. 1, pp. 152–164, 2010.
[6]  N. Zheng, X. Zhang, and G. R. Rosania, “Effect of phospholipidosis on the cellular pharmacokinetics of chloroquine,” Journal of Pharmacology and Experimental Therapeutics, vol. 336, no. 3, pp. 661–671, 2011.
[7]  M. J. Reasor and S. Kacew, “Drug-induced phospholipidosis: are there functional consequences?” Experimental Biology and Medicine, vol. 226, no. 9, pp. 825–830, 2001.
[8]  M. E. Cartwright, J. Petruska, J. Arezzo et al., “Phospholipidosis in neurons caused by posaconazole, without evidence for functional neurologic effects,” Toxicologic Pathology, vol. 37, no. 7, pp. 902–910, 2009.
[9]  M. J. Reasor, K. L. Hastings, and R. G. Ulrich, “Drug-induced phospholipidosis: issues and future directions,” Expert Opinion on Drug Safety, vol. 5, no. 4, pp. 567–583, 2006.
[10]  M. J. Reasor, C. M. McCloud, T. L. Beard et al., “Comparative evaluation of amiodarone-induced phospholipidosis and drug accumulation in Fischer-344 and Sprague-Dawley rats,” Toxicology, vol. 106, no. 1–3, pp. 139–147, 1996.
[11]  J. Willard, “FDA phospholipidosis working group preliminary results and developing opinions,” Presented at the Society of Toxicology (STP) Continuing Education Course on drug-induced phospholipidosis, 2008.
[12]  E. A. Tengstrand, G. T. Miwa, and F. Y. Hsieh, “Bis(monoacylglycerol)phosphate as a non-invasive biomarker to monitor the onset and time-course of phospholipidosis with drug-induced toxicities,” Expert Opinion on Drug Metabolism and Toxicology, vol. 6, no. 5, pp. 555–570, 2010.
[13]  P. R. Bernstein, J. Morelli, and P. Ciaccio, “Drug-induced phospholipidosis,” Annual Reports in Medicinal Chemistry, vol. 46, pp. 419–429, 2011.
[14]  L. R. Barone, S. Boyer, J. R. Damewood Jr., J. Fikes, and P. J. Ciaccio, “Phospholipogenic pharmaceuticals are associated with a higher incidence of histological findings than nonphospholipogenic pharmaceuticals in preclinical toxicology studies,” Journal of Toxicology, vol. 2012, Article ID 308594, 7 pages, 2012.
[15]  C. Stenfors, T. Hallerb?ck, L. G. Larsson, C. Wallsten, and S. B. Ross, “Pharmacology of a novel selective 5-hydroxytryptamine 1B receptor antagonist, AR-A000002,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 369, no. 3, pp. 330–337, 2004.
[16]  P. Bernstein, D. Hill, D. Nugiel, E. Pierson, A. Shenvi, and R. Jacobs, “Chroman compounds as 5-HT1B receptor antagonists, their preparation, pharmaceutical compositions, and use in therapy,” PCT Int. Appl. WO 2007053095, 2007.
[17]  J. K. Morelli, M. Buehrle, F. Pognan, L. R. Barone, W. Fieles, and P. J. Ciaccio, “Validation of an in vitro screen for phospholipidosis using a high-content biology platform,” Cell Biology and Toxicology, vol. 22, no. 1, pp. 15–27, 2006.
[18]  P. Boya, R. A. Gonzalez-Polo, D. Poncet et al., “Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine,” Oncogene, vol. 22, no. 25, pp. 3927–3936, 2003.
[19]  P. Boya, K. Andreau, D. Poncet et al., “Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion,” Journal of Experimental Medicine, vol. 197, no. 10, pp. 1323–1334, 2003.
[20]  D. Butler, Q. B. Brown, D. J. Chin et al., “Cellular responses to protein accumulation involve autophagy and lysosomal enzyme activation,” Rejuvenation Research, vol. 8, no. 4, pp. 227–237, 2005.
[21]  J. Bendiske and B. A. Bahr, “Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis - An approach for slowing Alzheimer disease?” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 5, pp. 451–463, 2003.
[22]  V. V. Teplova, A. A. Tonshin, P. A. Grigoriev, N. E. L. Saris, and M. S. Salkinoja-Salonen, “Bafilomycin A1 is a potassium ionophore that impairs mitochondrial functions,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 4, pp. 321–329, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133