Cytotoxicity of cadmium-containing silica nanoparticles Cd-SiO2NPs (0.05–100?μg/mL) versus SiO2NPs and CdCl2 was evaluated by an in vitro test battery in A549 by assessing (i) mitochondrial function, (ii) membrane integrity/cell morphology, (iii) cell growth/proliferation, (iv) apoptotic pathway, (v) oxidative stress, after short- (24–48?h) and long-term (10 days) exposure. Both Cd-SiO2NPs and CdCl2 produced dose-dependent cytotoxic effects: (i) MTT-assay: similar cytotoxicity pattern was observed at both 24 and 48?h, with a more Cd-SiO2NPs pronounced effect than CdCl2. Cd-SiO2NPs induced mortality (about 50%) at 1?μg/mL, CdCl2 at 25?μg/mL; (ii) calcein-AM/PI staining: decrease in cell viability, noticeable at 25?μg/mL, enhanced markedly at 50 and 100?μg/mL, after 24?h. Cd-SiO2NPs induced higher mortality than CdCl2 (25% versus 4%, resp., at 25?μg/mL) with further exacerbation after 48h; (iii) clonogenic assay: exposure for longer period (10 days) compromised the A549 proliferative capacity at very low dose (0.05?μg/mL); (iv) a progressive activation of caspase-3 immunolabelling was detected already at 1?μg/mL; (v) GSH intracellular level was modified by all compounds. In summary, in vitro data demonstrated that both Cd-SiO2NPs and CdCl2 affected all investigated endpoints, more markedly after Cd-SiO2NPs, while SiO2NPs influenced GSH only. 1. Introduction The rapid development of nanotechnology worldwide is accompanied by massive generation and usage of engineered nanoparticles (ENPs), even though essentially most of these NPs have not been sufficiently examined for potential toxicity at this time [1, 2]. Thus, with the exponential growing production of ENPs, the potential for the respiratory system to be exposed to a seemingly countless number of unique NPs is expected to increase, and many aspects related to the size of these nanomaterials, smaller than cells and cellular organelles, have raised concerns about safety [2–4]. Among ENPs, silica/cadmium containing nanomaterials have attracted much attention in the latest years for their applications in medicine and industrial manufacturing, synthesis, and engineering [5–10]. Though silica nanoparticles (SiO2NPs) are generally considered to be nontoxic, experiments using cell cultures or animal models have indicated dose-dependent cytotoxicity, increased reactive oxygen species, and reversible lung inflammation [11–19]. On the other hand, a large body of evidence supports lung toxicity effects after cadmium exposure when inhaled [20, 21], and although its toxicity mechanisms are not yet fully understood,
References
[1]
F. Marano, S. Hussain, F. Rodrigues-Lima, A. Baeza-Squiban, and S. Boland, “Nanoparticles: molecular targets and cell signalling,” Archives of Toxicology, vol. 85, no. 7, pp. 733–741, 2011.
[2]
A. D. Maynard, R. J. Aitken, T. Butz et al., “Safe handling of nanotechnology,” Nature, vol. 444, no. 7117, pp. 267–269, 2006.
[3]
G. Oberd?rster, E. Oberd?rster, and J. Oberd?rster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005.
[4]
G. Oberd?rster, A. Maynard, K. Donaldson et al., “Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy,” Particle and Fibre Toxicology, vol. 2, article 8, 2005.
[5]
N. Ahmed, H. Fessi, and A. Elaissari, “Theranostic applications of nanoparticles in cancer,” Drug Discovery Today, vol. 17, no. 19-20, pp. 1147–1154, 2012.
[6]
M. Mahmoudi, V. Serpooshan, and S. Laurent, “Engineered nanoparticles for biomolecular imaging,” Nanoscale, vol. 3, no. 8, pp. 3007–3026, 2011.
[7]
V. Mamaeva, C. Sahlgren, and M. Lindén, “Mesoporous silica nanoparticles in medicine-recent advances,” Advanced Drug Delivery Reviews, vol. 65, no. 5, pp. 689–702, 2013.
[8]
B. A. Rzigalinski and J. S. Strobl, “Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots,” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 280–288, 2009.
[9]
S. Simovic, N. Ghouchi-Eskandar, A. M. Sinn, D. Losic, and C. A. Prestidge, “Silica materials in drug delivery applications,” Current Drug Discovery Technologies, vol. 8, no. 3, pp. 269–276, 2011.
[10]
J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn, and V. S.-Y. Lin, “Mesoporous silica nanoparticles for intracellular controlled drug delivery,” Small, vol. 6, no. 18, pp. 1952–1967, 2010.
[11]
W.-S. Cho, M. Choi, B. S. Han et al., “Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles,” Toxicology Letters, vol. 175, no. 1–3, pp. 24–33, 2007.
[12]
H.-J. Eom and J. Choi, “Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B,” Toxicology in Vitro, vol. 23, no. 7, pp. 1326–1332, 2009.
[13]
E. Gazzano, M. Chiazza, M. Polimeri et al., “Physicochemical determinants in the cellular responses to nanostructured amorphous silicas,” Toxicological Sciences, vol. 128, no. 1, pp. 158–170, 2012.
[14]
T. Kaewamatawong, A. Shimada, M. Okajima et al., “Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation,” Toxicologic Pathology, vol. 34, no. 7, pp. 958–965, 2006.
[15]
W.-K. Lee, B. Torchalski, N. Kohistani, and F. Thévenod, “ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport,” Toxicological Sciences, vol. 121, no. 2, pp. 343–356, 2011.
[16]
W. Lin, Y.-W. Huang, X.-D. Zhou, and Y. Ma, “In vitro toxicity of silica nanoparticles in human lung cancer cells,” Toxicology and Applied Pharmacology, vol. 217, no. 3, pp. 252–259, 2006.
[17]
D. Napierska, L. C. J. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet, “The nanosilica hazard: another variable entity,” Particle and Fibre Toxicology, vol. 7, article 39, 2010.
[18]
A. Panas, C. Marquardt, O. Nalcaci et al., “Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages,” Nanotoxicology, vol. 7, no. 3, pp. 259–273, 2013.
[19]
E.-J. Park and K. Park, “Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro,” Toxicology Letters, vol. 184, no. 1, pp. 18–25, 2009.
[20]
S. Nogué, P. Sanz-Gallén, A. Torras, and F. Boluda, “Chronic overexposure to cadmium fumes associated with IgA mesangial glomerulonephritis,” Occupational Medicine, vol. 54, no. 4, pp. 265–267, 2004.
[21]
G. F. Nordberg, K. Onawa, M. Nordberg, and L. T. Friberg, “Cadmium,” in Handbook of Toxicology of Metals, G. F. Nordberg, B. A. Fowler, M. Nordberg, and L. Friberg, Eds., Elsevier, Amsterdam, The Netherlands, 2007.
[22]
Agency for Toxic Substances and Disease Registry (ATSDR), “Toxicological profile for Cadmium,” Atlanta, Ga, USA, Department of Health and Human Services, Public Health Service, 2008.
[23]
US EPA, “Draft nanomaterial research strategy,” (NRS) EPA/600/S-08/002, United States Environmental Protection Agency, 2008.
[24]
US National Cancer Institute—Nanotechnology Characterization Laboratory, http://ncl.cancer.gov/working_assay-cascade.asp.
[25]
D. B. Warheit, P. J. A. Borm, C. Hennes, and J. Lademann, “Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop,” Inhalation Toxicology, vol. 19, no. 8, pp. 631–643, 2007.
[26]
M. A. Maurer-Jones and C. L. Haynes, “Toward correlation in in vivo and in vitro nanotoxicology studies,” The Journal of Law, Medicine & Ethics, vol. 40, no. 4, pp. 795–801, 2013.
[27]
S. Creton, I. C. Dewhurst, L. K. Earl et al., “Acute toxicity testing of chemicals—opportunities to avoid redundant testing and use alternative approaches,” Critical Reviews in Toxicology, vol. 40, no. 1, pp. 50–83, 2010.
[28]
REACH (Registration Evaluation AuthorizationandRestriction of Chemicals), Regulation (EC) No 1907/2006, 2006, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=oj:l:2006:396:0001:0849:en:pdf.
[29]
T. Coccini, S. Barni, R. Vaccarone, P. Mustarelli, L. Manzo, and E. Roda, “Pulmonary toxicity of instilled cadmium-doped silica nanoparticles during acute and subacute stages in rats,” Histology and Histopathology, vol. 28, no. 2, pp. 195–209, 2013.
[30]
T. Coccini, E. Roda, S. Barni, C. Signorini, and L. Manzo, “Long-lasting oxidative pulmonary insult in rat after intratracheal instillation of silica nanoparticles doped with cadmium,” Toxicology, vol. 302, pp. 203–211, 2012.
[31]
C. Jumarie, “Cadmium transport through type II alveolar cell monolayers: contribution of transcellular and paracellular pathways in the rat ATII and the human A549 cells,” Biochimica et Biophysica Acta, vol. 1564, no. 2, pp. 487–499, 2002.
[32]
K. Y. Kwon, J. H. Jang, W. I. Choi, S. Ramachandran, C. H. Cho, and P. T. Cagle, “Expression of apoptotic nuclei by ultrastructural terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling and detection of FasL, caspases and PARP protein molecules in cadmium induced acute alveolar cell injury,” Toxicology, vol. 218, no. 2-3, pp. 197–204, 2006.
[33]
W.-K. Lee and F. Thévenod, “Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1323–1332, 2008.
[34]
F. Thévenod, “Cadmium and cellular signaling cascades: to be or not to be?” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 221–239, 2009.
[35]
H. Zhang, D. R. Newman, J. C. Bonner, and P. L. Sannes, “Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro,” Toxicology and Applied Pharmacology, vol. 265, no. 1, pp. 27–42, 2012.
[36]
E. Herzog, A. Casey, F. M. Lyng, G. Chambers, H. J. Byrne, and M. Davoren, “A new approach to the toxicity testing of carbon-based nanomaterials-The clonogenic assay,” Toxicology Letters, vol. 174, no. 1–3, pp. 49–60, 2007.
[37]
W.-K. Lee, M. Abouhamed, and F. Thévenod, “Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells,” American Journal of Physiology—Renal Physiology, vol. 291, no. 4, pp. F823–F832, 2006.
[38]
L. J?rup, M. Berglund, C. G. Elinder, G. Nordberg, and M. Vahter, “Health effects of cadmium exposure—a review of the literature and a risk estimate (Scandinavian Journal of Work, Environment and Health (1998) 24, suppl 1 (52)),” Scandinavian Journal of Work, Environment and Health, vol. 24, no. 3, p. 240, 1998.
[39]
S. Thijssen, J. Maringwa, C. Faes, I. Lambrichts, and E. Van Kerkhove, “Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels,” Toxicology, vol. 229, no. 1-2, pp. 145–156, 2007.
[40]
T. Aoyagi, K. Hayakawa, K. Miyaji, H. Ishikawa, and M. Hata, “Cadmium nephrotoxicity and evacuation from the body in a rat modeled subchronic intoxication,” International Journal of Urology, vol. 10, no. 6, pp. 332–338, 2003.
[41]
Y. Liu, J. Liu, S. M. Habeebu, M. P. Waalkes, and C. D. Klaassen, “Metallothionein-I/II null mice are sensitive to chronic oral cadmium-induced nephrotoxicity,” Toxicological Sciences, vol. 57, no. 1, pp. 167–176, 2000.
[42]
B. A. Hart, C. H. Lee, G. S. Shukla et al., “Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress,” Toxicology, vol. 133, no. 1, pp. 43–58, 1999.
[43]
X.-M. Sun, M. MacFarlane, J. Zhuang, B. B. Wolf, D. R. Green, and G. M. Cohen, “Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis,” The Journal of Biological Chemistry, vol. 274, no. 8, pp. 5053–5060, 1999.
[44]
J. M. Balbus, A. D. Maynard, V. L. Colvin et al., “Meeting report: hazard assessment for nanoparticles-report from an interdisciplinary workshop,” Environmental Health Perspectives, vol. 115, no. 11, pp. 1654–1659, 2007.
[45]
E.-J. Park, J. Yi, Y. Kim, K. Choi, and K. Park, “Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism,” Toxicology in Vitro, vol. 24, no. 3, pp. 872–878, 2010.
[46]
L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, and W. J. Stark, “Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress,” Environmental Science and Technology, vol. 41, no. 11, pp. 4158–4163, 2007.
[47]
Y. Jin, S. Kannan, M. Wu, and J. X. Zhao, “Toxicity of luminescent silica nanoparticles to living cells,” Chemical Research in Toxicology, vol. 20, no. 8, pp. 1126–1133, 2007.
[48]
Y. Shi, S. Yadav, F. Wang, and H. Wang, “Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro,” Journal of Toxicology and Environmental Health A, vol. 73, no. 11, pp. 748–756, 2010.
[49]
M. J. Akhtar, M. Ahamed, S. Kumar et al., “Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells,” Toxicology, vol. 276, no. 2, pp. 95–102, 2010.
[50]
S.-J. Choi, J.-M. Oh, and J.-H. Choy, “Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells,” Journal of Inorganic Biochemistry, vol. 103, no. 3, pp. 463–471, 2009.