The two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of electrically conducting non-Newtonian Casson fluid and heat transfer towards a stretching sheet have been considered. The effect of thermal radiation is also investigated. Implementing similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer. If velocity ratio parameter (B) and magnetic parameter (M) increase, then the velocity boundary layer thickness becomes thinner. On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (β). The velocity ratio parameter, Casson parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameter M for B > 1 and it decreases with M for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer thickness. 1. Introduction In fluid dynamics the effects of external magnetic field on magnetohydrodynamic (MHD) flow over a stretching sheet are very important due to its applications in many engineering problems, such as glass manufacturing, geophysics, paper production, and purification of crude oil. The flow due to stretching of a flat surface was first investigated by Crane [1]. Pavlov [2] studied the effect of external magnetic field on the MHD flow over a stretching sheet. Andersson [3] discussed the MHD flow of viscous fluid on a stretching sheet and Mukhopadhyay et al. [4] presented the MHD flow and heat transfer over a stretching sheet with variable fluid viscosity. On the other hand, Fang and Zhang [5] reported the exact solution of MHD flow due to a shrinking sheet with wall mass suction. Bhattacharyya and Layek [6] showed the behavior of solute distribution in MHD boundary layer flow past a stretching sheet. Furthermore, many vital properties of MHD flow over stretching sheet were explored in various articles [7–12] in the literature. Several important investigations on the flow due to stretching/shrinking sheet are available in the literature [13–16]. Chiam [17] investigated the stagnation-point flow towards a stretching sheet with the stretching velocity of the plate being equal to
References
[1]
L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 4, pp. 645–647, 1970.
[2]
K. B. Pavlov, “Magnetohydrodynamic flow of an incompressible viscous fluid caused by the deformation of a plane surface,” Magnetohydrodynamics, vol. 10, pp. 146–148, 1974.
[3]
H. I. Andersson, “MHD flow of a viscoelastic fluid past a stretching surface,” Acta Mechanica, vol. 95, no. 1–4, pp. 227–230, 1992.
[4]
S. Mukhopadhyay, G. C. Layek, and S. A. Samad, “Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity,” International Journal of Heat and Mass Transfer, vol. 48, no. 21-22, pp. 4460–4466, 2005.
[5]
T. Fang and J. Zhang, “Closed-form exact solutions of MHD viscous flow over a shrinking sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 7, pp. 2853–2857, 2009.
[6]
K. Bhattacharyya and G. C. Layek, “Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing,” Chemical Engineering Communications, vol. 197, no. 12, pp. 1527–1540, 2010.
[7]
K. Bhattacharyya, “Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection,” Frontiers of Chemical Engineering in China, vol. 5, no. 3, pp. 376–384, 2011.
[8]
K. Bhattacharyya, “Effects of heat source/sink on mhd flow and heat transfer over a shrinking sheet with mass suction,” Chemical Engineering Research Bulletin, vol. 15, no. 1, pp. 12–17, 2011.
[9]
K. Bhattacharyya and I. Pop, “MHD Boundary layer flow due to an exponentially shrinking sheet,” Magnetohydrodynamics, vol. 47, pp. 337–344, 2011.
[10]
H. Tabaei, M. A. Moghimi, A. Kimiaeifar, and M. A. Moghimi, “Homotopy analysis and differential quadrature solution of the problem of free-convective magnetohydrodynamic flow over a stretching sheet with the Hall effect and mass transfer taken into account,” Journal of Applied Mechanics and Technical Physics, vol. 52, no. 4, pp. 624–636, 2011.
[11]
R. Kandasamy, I. Muhaimin, and G. Kamachi, “Scaling group transformation for the effect of temperature-dependent nanofluid viscosity on an mhd boundary layer past a porous stretching surface,” Journal of Applied Mechanics and Technical Physics, vol. 52, no. 6, pp. 931–940, 2011.
[12]
A. M. Salem and R. Fathy, “Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation,” Chinese Physics B, vol. 21, Article ID 054701, 2012.
[13]
S. Mukhopadhyay and R. S. R. Gorla, “Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation,” Heat and Mass Transfer, vol. 48, pp. 1773–1781, 2012.
[14]
K. Bhattacharyya and G. C. Layek, “Slip effect on diffusion of chemically reactive species in boundary layer flow over a vertical stretching sheet with suction or blowing,” Chemical Engineering Communications, vol. 198, no. 11, pp. 1354–1365, 2011.
[15]
K. Bhattacharyya, “Boundary layer flow and heat transfer over an exponentially shrinking sheet,” Chinese Physics Letters, vol. 28, no. 7, Article ID 074701, 2011.
[16]
I. C. Mandal and S. Mukhopadhyay, “Heat transfer analysis for fluid flow over an exponentially stretching porous sheet with surface heat flux in porous medium,” Ain Shams Engineering Journal, vol. 4, pp. 103–110, 2013.
[17]
T. C. Chiam, “Stagnation-point flow towards a stretching plate,” Journal of the Physical Society of Japan, vol. 63, no. 6, pp. 2443–2444, 1994.
[18]
T. R. Mahapatra and A. S. Gupta, “Magnetohydrodynamic stagnation-point flow towards a stretching sheet,” Acta Mechanica, vol. 152, no. 1-4, pp. 191–196, 2001.
[19]
T. R. Mahapatra and A. S. Gupta, “Heat transfer in stagnation-point flow towards a stretching sheet,” Heat and Mass Transfer, vol. 38, no. 6, pp. 517–521, 2002.
[20]
R. Nazar, N. Amin, D. Filip, and I. Pop, “Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet,” International Journal of Engineering Science, vol. 42, no. 11-12, pp. 1241–1253, 2004.
[21]
G. C. Layek, S. Mukhopadhyay, and S. A. Samad, “Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing,” International Communications in Heat and Mass Transfer, vol. 34, no. 3, pp. 347–356, 2007.
[22]
S. Nadeem, A. Hussain, and M. Khan, “HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 3, pp. 475–481, 2010.
[23]
K. Bhattacharyya, “Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet,” International Communications in Heat and Mass Transfer, vol. 38, no. 7, pp. 917–922, 2011.
[24]
K. Bhattacharyya, “Dual solutions in unsteady stagnation-point flow over a shrinking sheet,” Chinese Physics Letters, vol. 28, no. 8, Article ID 084702, 2011.
[25]
K. Bhattacharyya, “Heat transfer in unsteady boundary layer stagnation-point flow towards a shrinking sheet,” Ain Shams Engineering Journal, vol. 4, pp. 259–264, 2013.
[26]
K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Reactive solute transfer in magnetohydrodynamic boundary layer stagnation-point flow over a stretching sheet with suction/blowing,” Chemical Engineering Communications, vol. 199, no. 3, pp. 368–383, 2012.
[27]
K. Bhattacharyya, M. G. Arif, and W. A. Pramanik, “MHD boundary layer stagnation-point flow and mass transfer over a permeable shrinking sheet with suction/blowing and chemical reaction,” Acta Technica, vol. 57, pp. 1–15, 2012.
[28]
K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Slip effects on an unsteady boundary layer stagnation-point flow and heat transfer towards a stretching sheet,” Chinese Physics Letters, vol. 28, no. 9, Article ID 094702, 2011.
[29]
K. Bhattacharyya and K. Vajravelu, “Stagnation-point flow and heat transfer over an exponentially shrinking sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 7, pp. 2728–2734, 2012.
[30]
R. A. Van Gorder, K. Vajravelu, and I. Pop, “Hydromagnetic stagnation point flow of a viscous fluid over a stretching or shrinking sheet,” Meccanica, vol. 47, no. 1, pp. 31–50, 2012.
[31]
W. L. Wilkinson, “The drainage of a maxwell liquid down a vertical plate,” The Chemical Engineering Journal, vol. 1, no. 3, pp. 255–257, 1970.
[32]
K. R. Rajagopal, “Viscometric flows of third grade fluids,” Mechanics Research Communications, vol. 7, no. 1, pp. 21–25, 1980.
[33]
K. R. Rajagopal, T. Y. Na, and A. S. Gupta, “Flow of a viscoelastic fluid over a stretching sheet,” Rheologica Acta, vol. 23, no. 2, pp. 213–215, 1984.
[34]
C. Dorier and J. Tichy, “Behavior of a bingham-like viscous fluid in lubrication flows,” Journal of Non-Newtonian Fluid Mechanics, vol. 45, no. 3, pp. 291–310, 1992.
[35]
A. G. Fredrickson, Principles and Applications of Rheology, Prentice-Hall, Englewood Cliffs, NJ, USA, 1964.
[36]
M. Mustafa, T. Hayat, I. Pop, and A. Aziz, “Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate,” Heat Transfer, vol. 40, no. 6, pp. 563–576, 2011.
[37]
K. Bhattacharyya, T. Hayat, and A. Alsaedi, “Exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet,” Zeitschrift für Angewandte Mathematik und Mechanik, 2013.
[38]
K. Bhattacharyya, T. Hayat, and A. Alsaedi, “Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer,” Chinese Physics B, vol. 22, Article ID 024702, 2013.
[39]
T. Hayat, Z. Abbas, and N. Ali, “MHD flow and mass transfer of a upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction species,” Physics Letters Section A, vol. 372, no. 26, pp. 4698–4704, 2008.
[40]
T. Hayat, S. Iram, T. Javed, and S. Asghar, “Shrinking flow of second grade fluid in a rotating frame: an analytic solution,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 10, pp. 2932–2941, 2010.
[41]
K.-L. Hsiao, “Viscoelastic fluid over a stretching sheet with electromagnetic effects and nonuniform heat source/sink,” Mathematical Problems in Engineering, vol. 2010, Article ID 740943, 14 pages, 2010.
[42]
B. Sahoo and S. Poncet, “Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial slip boundary condition,” International Journal of Heat and Mass Transfer, vol. 54, no. 23-24, pp. 5010–5019, 2011.
[43]
K. Bhattacharyya, S. Mukhopadhyay, G. C. Layek, and I. Pop, “Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 55, no. 11-12, pp. 2945–2952, 2012.
[44]
S. Mukhopadhyay, “Casson fluid flow and heat transfer over a nonlinearly stretching,” Chinese Physics B, vol. 22, Article ID 074701, 2013.
[45]
S. Mukhopadhyay, P. R. De, and G. C. Layek, “Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation,” Journal of Applied Mechanics and Technical Physics, vol. 54, pp. 385–396, 2013.
[46]
T. Javed, N. Ali, Z. Abbas, and M. Sajid, “Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet,” Chemical Engineering Communications, vol. 200, pp. 327–336, 2013.
[47]
M. Nakamura and T. Sawada, “Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis,” Journal of Biomechanical Engineering, vol. 110, no. 2, pp. 137–143, 1988.
[48]
M. Q. Brewster, Thermal Radiative Transfer Properties, John Wiley and Sons, 1972.
[49]
K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “MHD boundary layer slip flow and heat transfer over a flat plate,” Chinese Physics Letters, vol. 28, no. 2, Article ID 024701, 2011.
[50]
S. Mukhopadhyay, K. Bhattacharyya, and G. C. Layek, “Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation,” International Journal of Heat and Mass Transfer, vol. 54, no. 13-14, pp. 2751–2757, 2011.
[51]
K. Bhattacharyya, “Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet,” International Communications in Heat and Mass Transfer, vol. 38, no. 7, pp. 917–922, 2011.