全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electron Momentum Density and Phase Transition in ZnS

DOI: 10.1155/2013/349870

Full-Text   Cite this paper   Add to My Lib

Abstract:

The electron momentum density distribution and phase transition in ZnS are reported in this paper. The calculations are performed on the basis of density functional theory (DFT) based on the linear combination of atomic orbitals (LCAO) method. To compare the theoretical Compton profile, the measurement on polycrystalline ZnS has been made using a Compton spectrometer employing 59.54?keV gamma rays. The spherically averaged theoretical Compton profile is in agreement with the measurement. On the basis of equal valence-electron-density Compton profiles, it is found that ZnS is less covalent as compared to ZnSe. The present study suggests zincblende (ZB) to rocksalt (RS) phase transition at 13.7?GPa. The calculated transition pressure is found in good agreement with the previous investigations. 1. Introduction Zinc sulfide (ZnS) is an important member of the II–VI group due to its wide range of technological applications [1–4]. ZnS is a wide band gap (3.6?eV) material used in the optoelectronic devices such as optical memories and visual displays. It has two different crystal structures (zincblende and wurtzite), both of which exhibit direct band gaps. It is believed that ZnS transforms from the zincblende (ZB) or wurtzite (WZ) structure to the rocksalt (RS) structure and then to the β-Sn phase. The electronic, optical, and structural properties of ZnS have been reported earlier by the number of research groups [5–36]. Liu and Chan [5] have performed density functional calculations within local density approximation (LDA) to explore the electronic properties of ZB ZnS with various impurities and defects. Khenata et al. [6] also have investigated the electronic properties of zinc monochalcogenides including ZnS using full-potential linear augmented plane-wave method plus local orbitals (FP-LAPW + lo) within LDA. Goswami et al. [7] have reported the electronic properties of low dimensional ZnS using density functional tight binding (DFTB) method in ZB and WZ modifications. Erbarut [8] have reported the electronic spectra of vacancies and their various charge states in cubic ZnS using Green’s function approach within the localized orbital method. Benmakhlouf et al. [9] have predicted the pressure dependency on the electronic structure of ZnS using pseudopotential scheme. They observed that ZnS was found to exhibit direct and indirect band gaps under pressure. The band structure of ZnS has been investigated by Jaffe et al. [10] using an all-electron Hartree-Fock (HF) method including correlation corrections and evaluated the role of Zn 3d-band states in the

References

[1]  R. Rossetti, J. L. Ellison, J. M. Gibson, and L. E. Brus, “Size effects in the excited electronic states of small colloidal CdS crystallites,” The Journal of Chemical Physics, vol. 80, no. 9, pp. 4464–4469, 1984.
[2]  M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes,” Applied Physics Letters, vol. 59, no. 11, pp. 1272–1274, 1991.
[3]  H. Kinto, M. Yagi, K. Tanigashira, T. Yamada, H. Uchiki, and S. Iida, “Photoluminescence studies of p- and n-type ZnS layers grown by vapor phase epitaxy,” Journal of Crystal Growth, vol. 117, no. 1–4, pp. 348–352, 1992.
[4]  G. D. Lee, M. H. Lee, and J. Ihm, “Role of d electrons in the zinc-blende semiconductors ZnS, ZnSe, and Z,” Physical Review B, vol. 52, no. 3, pp. 1459–1462, 1995.
[5]  H. J. Liu and C. T. Chan, “Density functional study on the electronic properties of ZnS:Te,” Physics Letters A, vol. 352, no. 6, pp. 531–537, 2006.
[6]  R. Khenata, A. Bouhemadou, M. Sahnoun, A. H. Reshak, H. Baltache, and M. Rabah, “Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure,” Computational Materials Science, vol. 38, no. 1, pp. 29–38, 2006.
[7]  B. Goswami, S. Pal, and P. Sarkar, “A theoretical study on the electronic structure of ZnSe/ZnS and ZnS/ZnSe core/shell nanoparticles,” Journal of Physical Chemistry C, vol. 112, no. 31, pp. 11630–11636, 2008.
[8]  E. Erbarut, “The electronic spectra of vacancies in ZnS, ZnSe and ZnTe,” Solid State Communications, vol. 128, no. 2-3, pp. 113–117, 2003.
[9]  F. Benmakhlouf, A. Bechiri, and N. Bouarissa, “Zinc-blende ZnS under pressure: predicted electronic properties,” Solid-State Electronics, vol. 47, no. 8, pp. 1335–1338, 2003.
[10]  J. E. Jaffe, R. Pandey, and A. B. Kunz, “Correlated hartree-fock electronic structure of ZnO and ZnS,” Journal of Physics and Chemistry of Solids, vol. 52, no. 6, pp. 755–760, 1991.
[11]  S. Ves, U. Schwarz, N. E. Christensen, K. Syassen, and M. Cardona, “Cubic ZnS under pressure: optical-absorption edge, phase transition, and calculated equation of state,” Physical Review B, vol. 42, no. 14, pp. 9113–9118, 1990.
[12]  J. L. Martins, N. Troullier, and S. H. Wei, “Pseudopotential plane-wave calculations for ZnS,” Physical Review B, vol. 43, no. 3, pp. 2213–2217, 1991.
[13]  J. E. Jaffe, R. Pandey, and M. J. Seel, “Ab initio high-pressure structural and electronic properties of ZnS,” Physical Review B, vol. 47, no. 11, pp. 6299–6303, 1993.
[14]  A. Nazzal and A. Qteish, “Ab initio pseudopotential study of the structural phase transformations of ZnS under high pressure,” Physical Review B, vol. 53, no. 13, pp. 8262–8266, 1996.
[15]  A. Qteish, M. Abu-Jafar, and A. Nazzal, “The instability of the cinnabar phase of ZnS under high pressure,” Journal of Physics Condensed Matter, vol. 10, no. 23, pp. 5069–5080, 1998.
[16]  M. Catti, “First-principles study of the orthorhombic mechanism for the B3/B1 high-pressure phase transition of ZnS,” Physical Review B, vol. 65, no. 22, Article ID 224115, 8 pages, 2002.
[17]  R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, S. Mohan, R. Murugan, and B. Palanivel, “Electronic and structural properties of zinc chalcogenides ZnX (X?=?S, Se, Te),” Journal of Alloys and Compounds, vol. 359, no. 1-2, pp. 22–26, 2003.
[18]  M. S. Miao and W. R. L. Lambrecht, “Universal transition state for high-pressure zinc blende to rocksalt phase transitions,” Physical Review Letters, vol. 94, no. 22, Article ID 225501, 4 pages, 2005.
[19]  X. R. Chen, X. F. Li, L. C. Cai, and J. Zhu, “Pressure induced phase transition in ZnS,” Solid State Communications, vol. 139, no. 5, pp. 246–249, 2006.
[20]  S. K. Gupta, S. Kumar, and S. Auluck, “Electronic and optical properties of high pressure stable phases of ZnS: comparison of FPLAPW and PW-PP results,” Optics Communications, vol. 284, no. 1, pp. 20–26, 2011.
[21]  A. H. Reshak and S. Auluck, “Ab initio calculations of the electronic, linear and nonlinear optical properties of zinc chalcogenides,” Physica B, vol. 388, no. 1-2, pp. 34–42, 2007.
[22]  N. Bouarissa, “High pressure dependence of positron states in zinc-blende boron nitride,” Materials Science and Engineering B, vol. 94, no. 1, pp. 54–61, 2002.
[23]  N. Bouarissa, “Positron behaviour in GaSb under pressure,” Journal of Physics and Chemistry of Solids, vol. 61, no. 1, pp. 109–114, 2000.
[24]  N. Bouarissa, “Composition dependence of positron states in zincblende Ga1-xInxN,” Philosophical Magazine B, vol. 80, no. 10, pp. 1743–1756, 2000.
[25]  M. S. Dhaka, G. Sharma, M. C. Mishra, K. B. Joshi, R. K. Kothari, and B. K. Sharma, “A study of electronic structure of CdSe by Compton scattering technique,” Physica B, vol. 405, no. 17, pp. 3537–3542, 2010.
[26]  N. Munjal, V. Sharma, G. Sharma, V. Vyas, B. K. Sharma, and J. E. Lowther, “Ab-initio study of the electronic and elastic properties of beryllium chalcogenides BeX (X?=?S, Se and Te),” Physica Scripta, vol. 84, no. 3, Article ID 035704, 2011.
[27]  N. Munjal, G. Sharma, V. Vyas, K. B. Joshi, and B. K. Sharma, “Ab-initio study of structural and electronic properties of AlAs,” Philosophical Magazine, vol. 92, no. 24, pp. 3101–3112, 2012.
[28]  G. A. Samara and H. G. Drickamer, “Pressure induced phase transitions in some II–VI compounds,” Journal of Physics and Chemistry of Solids, vol. 23, no. 5, pp. 457–461, 1962.
[29]  G. J. Piermarini and S. Block, “Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale,” Review of Scientific Instruments, vol. 46, no. 8, article 973, 7 pages, 1975.
[30]  Y. Zhou, A. J. Campbell, and D. l. Heinz, “Equations of state and optical properties of the high pressure phase of zinc sulfide,” Journal of Physics and Chemistry of Solids, vol. 52, no. 6, pp. 821–825, 1991.
[31]  S. Desgreniers, L. Beaulieu, and I. Lepage, “Pressure-induced structural changes in ZnS,” Physical Review B, vol. 61, no. 13, pp. 8726–8733, 2000.
[32]  Y. Pan, S. Qu, S. Dong et al., “An investigation on the pressure-induced phase transition of nanocrystalline ZnS,” Journal of Physics Condensed Matter, vol. 14, no. 44, pp. 10487–10490, 2002.
[33]  B. K. Panda and H. C. Padhi, “Compton Scattering Studies in ZnS and ZnSe,” Physica Status Solidi (b), vol. 166, no. 2, pp. 519–523, 1991.
[34]  O. Madelung, H. H. Landolt, and R. B?rnstein, Eds., Numerical Data and Functional Relationships in Science and Technology, vol. 17, Springer, Berlin, Germany, 1982.
[35]  J. R. Chelikowsky, “High-pressure phase transitions in diamond and zinc-blende semiconductors,” Physical Review B, vol. 35, no. 3, pp. 1174–1180, 1987.
[36]  T. Soma and H. M. Kagaya, “High-pressure NaCl-phase of tetrahedral compounds,” Solid State Communications, vol. 50, no. 3, pp. 261–263, 1984.
[37]  M. J. Cooper, “Compton scattering and electron momentum determination,” Reports on Progress in Physics, vol. 48, no. 4, article 415, 1985.
[38]  B. Williams, Compton Scattering, McGraw-Hill, New York, NY, USA, 1977.
[39]  M. J. Cooper, P. E. Mijnarends, N. Shiotani, N. Sakai, and A. Bansil, X-Ray Compton Scattering, Oxford University Press, New York, NY, USA, 2004.
[40]  B. K. Sharma, A. Gupta, H. Singh, S. Perkki?, A. Kshirsagar, and D. G. Kanhere, “Compton profile of palladium,” Physical Review B, vol. 37, no. 12, pp. 6821–6826, 1988.
[41]  D. N. Timms, “Compton scattering studies of spin and momentum densities,” Unpublished Ph.D. thesis, University of Warwick, Coventry, UK, 1989.
[42]  J. Felsteiner, P. Pattison, and M. Cooper, “Effect of multiple scattering on experimental Compton profiles: a Monte Carlo calculation,” Philosophical Magazine, vol. 30, no. 3, pp. 537–548, 1974.
[43]  F. Biggs, L. B. Mendelsohn, and J. B. Mann, “Hartree Fock Compton profiles for the elements,” Atomic Data and Nuclear Data Tables, vol. 16, no. 3, pp. 201–309, 1975.
[44]  R. Dovesi, V. R. Saunders, C. Roetti et al., CRYSTAL06 USer's Manual, University of Torino, Turin, Italy, 2006.
[45]  http://www.tcm.phy.cam.ac.uk/~mdt26/basis_sets/Zn_basis.txt, http://www.tcm.phy.cam.ac.uk/~mdt26/basis_sets/S_basis.txt.
[46]  A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” Journal of Chemical Physics, vol. 98, no. 7, article 5648, 5 pages, 1993.
[47]  J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996.
[48]  J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)],” Physical Review Letters, vol. 78, no. 7, article 1396, 1997.
[49]  L. Lam and P. M. Platzman, “Momentum density and Compton profile of the inhomogeneous interacting electronic system. I. Formalism,” Physical Review B, vol. 9, no. 12, pp. 5122–5127, 1974.
[50]  V. Vyas, V. Purvia, Y. C. Sharma, K. B. Joshi, and B. K. Sharma, “Compton scattering study of ZnSe,” Physica Status Solidi (b), vol. 243, no. 6, pp. 1253–1262, 2006.
[51]  W. A. Reed and P. Eisenberger, “Gamma-ray compton profiles of diamond, silicon, and germanium,” Physical Review B, vol. 6, no. 12, pp. 4596–4604, 1972.
[52]  M. C. Mishra, G. Sharma, R. K. Kothari, Y. K. Vijay, and B. K. Sharma, “Electronic structure of CaX (X?=?O, S, Se) compounds using Compton spectroscopy,” Computational Materials Science, vol. 51, no. 1, pp. 340–346, 2012.
[53]  G. Sharma, K. B. Joshi, M. C. Mishra et al., “Electronic structure of AlAs: a Compton profile study,” Journal of Alloys and Compounds, vol. 485, no. 1-2, pp. 682–686, 2009.
[54]  R. Kumar, N. Munjal, G. Sharma, V. Vyas, M. S. Dhaka, and B. K. Sharma, “Electron momentum density and phase transition in SrO,” Phase Transition, vol. 85, no. 12, pp. 1098–1108, 2012.
[55]  G. Sharma, P. Bhambhani, N. Munjal, V. Sharma, and B. K. Sharma, “Electronic properties of tin telluride: a first principles study,” Journal of Nano- and Electronic Physics, vol. 3, no. 1, article 341, 2011.
[56]  P. Bhambhani and G. Sharma, “Ab-initio study of phase transition and electron momentum density in PbTe,” Accepted in Phase Transition, 2012.
[57]  J. C. Phillips, “Ionicity of the chemical bond in crystals,” Reviews of Modern Physics, vol. 42, no. 3, pp. 317–356, 1970.
[58]  F. Birch, “Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K,” Journal of Geophysical Research, vol. 83, no. 3, pp. 1257–1268, 1978.
[59]  J. P. Poirier, Introduction to the Physics of the Earth’s Interior, Cambridge University Press, Cambridge, UK, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133