全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structures and Stabilities of Alkaline Earth Metal Oxide Nanoclusters: A DFT Study

DOI: 10.1155/2013/720794

Full-Text   Cite this paper   Add to My Lib

Abstract:

The stability orders of a number of alkaline earth oxide cluster isomers , M = Mg, Ca, Sr, Ba and have been determined by means of density functional theory studies using the LDA-PWC functional. Among the candidate structures, the hexagonal-ring-based isomers and the slab shapes are found to display similar stabilities. Stacks of hexagonal (MO)3 rings are found to be the slightly preferred growth strategy among the (MgO)6, isomers. In contrast, the slab structures are slightly preferred for the other alkaline metal oxide (MO)6 clusters. An explanation based on packing and aromaticity arguments has been proposed. This study may have important implications for modeling and understanding the initial growth patterns of small nanostructures of alkaline earth metals. 1. Introduction In the last few years, considerable effort has been directed to the understanding of metallic and semiconductor clusters. Clusters are aggregates of atoms or molecules intermediate in size between individual atoms and bulk matter, and their studies provide an interesting way to develop materials with varying properties by changing size and shape. Hence, studies of cluster properties as a function of size have received prominence in recent years. While much progress has been made on clusters of metals and semiconductors, metal oxide particles are often considered to be bulk fragments. However, their structure and properties could be entirely different in small clusters [1–4]. In this work, we have performed a comparative study of the structures, stabilities, and properties of some alkaline earth metal oxides ( , , , and ). Magnesium oxide crystallizes in the rock-salt structure and has some typical semiconducting properties, such as wide valence band (~6?eV), large dielectric constant (9.8), and small exciton binding energy (<0.1?eV). For bulk MgO, the experimental value of the band gap is 7.8?eV [5]. It is close to an ideal insulating ionic solid with a valence band structure dominated by the strong potential of the ionic cores. Studies of the electronic properties of MgO are motivated by its technological applications, such as in catalysis, microelectronics, and electrochemistry. Bulk MgO is relatively inert, but its reactivity is greatly enhanced in the nanoscale. The high surface area and the intrinsically high surface reactivity of MgO nanocrystals make these materials especially effective as adsorbents [6]. In fact, they have been called “destructive adsorbents” because of their tendency to adsorb and simultaneously destroy by bond breaking processes a series of toxic

References

[1]  A. Jain, V. Kumar, M. Sluiter, and Y. Kawazoe, “First principles studies of magnesium oxide clusters by parallelized Tohoku University Mixed-Basis program TOMBO,” Computational Materials Science, vol. 36, no. 1-2, pp. 171–175, 2006.
[2]  N. Sharma and R. Kakkar, “Recent advancements in warfare agents/metal oxides surface chemistry and their simulant studies,” Advanced Materials Letters, 2013.
[3]  P. N. Kapoor, A. K. Bhagi, R. S. Mulukutla, and K. J. Klabunde, Dekker Encyclopedia of Nanoscience & Technology, Marcel Dekker, New York, NY, USA, 2004.
[4]  A. Khaleel, P. N. Kapoor, and K. J. Klabunde, “Nanocrystalline metal oxides as new adsorbents for air purification,” Nanostructured Materials, vol. 11, no. 4, pp. 459–468, 1999.
[5]  J. Heyd, J. E. Peralta, and G. E. Scuseria, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” Journal of Chemical Physics, vol. 123, no. 17, Article ID 174101, 8 pages, 2005.
[6]  S. Utamapanya, K. J. Klabunde, and J. R. Schlup, “Nanoscale metal oxide particles/clusters as chemical reagents,” Chemistry of Materials, vol. 3, pp. 175–181, 1991.
[7]  O. Koper, Y. X. Li, and K. J. Klabunde, “Destructive adsorption of chlorinated hydrocarbons on ultrafine (nanoscale) particles of calcium oxide,” Chemistry of Materials, vol. 5, no. 4, pp. 500–505, 1993.
[8]  Y. X. Li and K. J. Klabunde, “Nano-scale metal oxide particles as chemical reagents. Destructive adsorption of a chemical agent simulant, dimethyl methylphosphonate, on heat-treated magnesium oxide,” Langmuir, vol. 7, no. 7, pp. 1388–1393, 1991.
[9]  Y.-X. Li, J. R. Schlup, and K. J. Klabunde, “Fourier transform infrared photoacoustic spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium oxide,” Langmuir, vol. 7, no. 7, pp. 1394–1399, 1991.
[10]  R. C. Whited, C. J. Flaten, and W. C. Walker, “Exciton thermoreflectance of MgO and CaO,” Solid State Communications, vol. 13, no. 11, pp. 1903–1905, 1973.
[11]  I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, “Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials,” Physical Review Letters, vol. 89, no. 21, Article ID 216403, 4 pages, 2002.
[12]  B. Nagappa and G. T. Chandrappa, “Nanocrystalline CaO as adsorbent to remove COD from paper mill effluent,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 3, pp. 1039–1042, 2007.
[13]  F. Jin, Y. Liu, and M. D. Christopher, “Barium strontium oxide coated carbon nanotubes as field emitters,” Applied Physics Letters, vol. 90, no. 14, Article ID 143114, 3 pages, 2007.
[14]  W. A. Saunders, “Structural dissimilarities between small II-VI compound clusters: MgO and CaO,” Physical Review B, vol. 37, no. 11, pp. 6583–6586, 1988.
[15]  W. A. Saunders, “Molecules and clusters,” Zeitschrift für Physik D, vol. 12, pp. 601–603, 1989.
[16]  T. P. Martin and T. Bergmann, “Mass spectra of Ca-O and Ba-O clusters,” The Journal of Chemical Physics, vol. 90, no. 11, pp. 6664–6667, 1989.
[17]  P. J. Ziemann and A. W. Castleman, “Mass-spectrometric study of the formation, evaporation, and structural properties of doubly charged MgO clusters,” Physical Review B, vol. 44, no. 12, pp. 6488–6499, 1991.
[18]  P. J. Ziemann and A. W. Castleman, “Structures and bonding properties of calcium oxide clusters inferred from mass spectral abundance patterns,” The Journal of Physical Chemistry, vol. 96, no. 11, pp. 4271–4276, 1992.
[19]  P. J. Ziemann and A. W. Castleman Jr., “Mass spectrometric study of MgO clusters produced by the gas aggregation technique,” Zeitschrift für Physik D, vol. 20, pp. 97–99, 1991.
[20]  P. J. Ziemann and A. W. Castleman Jr., “Stabilities and structures of gas phase MgO clusters,” Journal of Chemical Physics, vol. 94, no. 1, pp. 718–728, 1991.
[21]  M. Gutowski, P. Skurski, X. Li, and L.-S. Wang, “ (n = 1–5) clusters: multipole-bound anions and photodetachment spectroscopy,” Physical Review Letters, vol. 85, no. 15, pp. 3145–3148, 2000.
[22]  R. Kakkar, P. N. Kapoor, and K. J. Klabunde, “Theoretical study of the adsorption of formaldehyde on magnesium oxide nanosurfaces: size effects and the role of low-coordinated and defect sites,” The Journal of Physical Chemistry B, vol. 108, no. 47, pp. 18140–18148, 2004.
[23]  R. Kakkar, P. N. Kapoor, and K. J. Klabunde, “First principles density functional study of the adsorption and dissociation of carbonyl compounds on magnesium oxide nanosurfaces,” Journal of Physical Chemistry B, vol. 110, no. 51, pp. 25941–25949, 2006.
[24]  R. Dong, X. Chen, X. Wang, and W. Lu, “Structural transition of hexagonal tube to rocksalt for (MgO)3n, ,” Journal of Chemical Physics, vol. 129, no. 4, Article ID 044705, 5 pages, 2008.
[25]  M. Srnec and R. Zahradník, “Small group IIa-VIa clusters and related systems: a theoretical study of physical properties, reactivity, and electronic spectra,” European Journal of Inorganic Chemistry, vol. 2007, no. 11, pp. 1529–1543, 2007.
[26]  M. Wilson, “Stability of small MgO nanotube clusters: predictions of a transferable ionic potential model,” The Journal of Physical Chemistry B, vol. 101, no. 25, pp. 4917–4924, 1997.
[27]  M. Wilson, P. A. Madden, N. C. Pyper, and J. H. Harding, “Molecular dynamics simulations of compressible ions,” Journal of Chemical Physics, vol. 104, no. 20, pp. 8068–8081, 1996.
[28]  E. De La Puente, A. Aguado, A. Ayuela, and J. M. López, “Structural and electronic properties of small neutral (MgO)n clusters,” Physical Review B, vol. 56, no. 12, pp. 7607–7614, 1997.
[29]  M.-J. Malliavin and C. Coudray, “Ab initio calculations on (MgO)n, (CaO)n, and (NaCl)n clusters (n = 1–6),” Journal of Chemical Physics, vol. 106, no. 6, pp. 2323–2330, 1997.
[30]  J. M. Recio, R. Pandey, A. Ayuela, and A. B. Kunz, “Molecular orbital calculations on (MgO)n and clusters (n = 1–13),” The Journal of Chemical Physics, vol. 98, no. 6, pp. 4783–4792, 1993.
[31]  J. M. Recio and R. Pandey, “Ab initio study of neutral and ionized microclusters of MgO,” Physical Review A, vol. 47, no. 3, pp. 2075–2082, 1993.
[32]  A. Aguado and J. M. López, “Structures and stabilities of CaO and MgO clusters and cluster ions: an alternative interpretation of the experimental mass spectra,” The Journal of Physical Chemistry B, vol. 104, no. 35, pp. 8398–8405, 2000.
[33]  B. Delley, “An all electron numerical method for solving the local density functional for polyatomic molecules,” Journal of Chemical Physics, vol. 92, no. 1, pp. 508–517, 1990.
[34]  B. Delley, “Analytic energy derivatives in the numerical local density functional approach,” Journal of Chemical Physics, vol. 94, no. 11, pp. 7245–7250, 1991.
[35]  B. Delley, “Fast calculation of electrostatics in crystals and large molecules,” The Journal of Physical Chemistry, vol. 100, no. 15, pp. 6107–6110, 1996.
[36]  B. Delley, “From molecules to solids with the DMol3 approach,” Journal of Chemical Physics, vol. 113, no. 18, pp. 7756–7764, 2000.
[37]  J. P. Perdew, J. A. Chevary, S. H. Vosko et al., “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, vol. 46, no. 11, pp. 6671–6687, 1992.
[38]  J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, vol. 45, no. 23, pp. 13244–13249, 1992.
[39]  R. Kakkar, R. Grover, and P. Gahlot, “Density functional study of the properties of isomeric aminophenylhydroxamic acids and their copper (II) complexes,” Polyhedron, vol. 25, no. 3, pp. 759–766, 2006.
[40]  F. Bawa and I. Panas, “Competing pathways for MgO, CaO, SrO, and BaO nanocluster growth,” Physical Chemistry Chemical Physics, vol. 4, pp. 103–108, 2002.
[41]  á. Vibók and G. J. Halász, “Parametrization of complex absorbing potentials for time-dependent quantum dynamics using multi-step potentials,” Physical Chemistry Chemical Physics, vol. 3, pp. 3042–3047, 2001.
[42]  S. Veliah, R. Pandey, Y. S. Li, J. M. Newsam, and B. Vessal, “Density functional study of structural and electronic properties of cube-like MgO clusters,” Chemical Physics Letters, vol. 235, no. 1-2, pp. 53–57, 1995.
[43]  K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, van Nostrand Reinhold, New York, NY, USA, 1979.
[44]  M. C. Day and J. Selbin, Theoretical Inorganic Chemistry, chapter 4, Reinhold, New York, NY, USA; Chapman & Hall, London, UK, 1962.
[45]  D. J. Driscoll, W. Martir, J. X. Wang, and J. H. Lunsford, “Formation of gas-phase methyl radicals over magnesium oxide,” Journal of the American Chemical Society, vol. 107, no. 1, pp. 58–63, 1985.
[46]  T. Ito and J. H. Lunsford, “Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide,” Nature, vol. 314, pp. 721–722, 1985.
[47]  T. Ito, J. X. Wang, C. H. Lin, and J. H. Lunsford, “Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst,” Journal of the American Chemical Society, vol. 107, no. 18, pp. 5062–5068, 1985.
[48]  D. Van Heijnsbergen, G. Von Helden, G. Meijer, and M. A. Duncan, “Infrared resonance-enhanced multiphoton ionization spectroscopy of magnesium oxide clusters,” Journal of Chemical Physics, vol. 116, no. 6, pp. 2400–2406, 2002.
[49]  P. A. Cox and A. A. Williams, “HREELS studies of simple ionic solids,” Journal of Electron Spectroscopy and Related Phenomena, vol. 39, pp. 45–48, 1986.
[50]  V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, Mass, USA, 1994.
[51]  G. Pacchioni, C. Sousa, F. Illas, P. S. Bagus, and F. Parmigiani, “Measures of ionicity of alkaline-earth oxides from the analysis of ab initio cluster wave functions,” Physical Review B, vol. 48, no. 16, pp. 11573–11582, 1993.
[52]  P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. Van Eikema Hommes, “Nucleus-independent chemical shifts: a simple and efficient aromaticity probe,” Journal of the American Chemical Society, vol. 118, no. 26, pp. 6317–6318, 1996.
[53]  R. Kakkar and C. Singh, “Theoretical study of the kojic acid structure in gas phase and aqueous solution,” International Journal of Quantum Chemistry, vol. 111, no. 15, pp. 4318–4329, 2011.
[54]  R. Kakkar, M. Bhandari, and R. Gaba, “Tautomeric transformations and reactivity of alloxan,” Computational and Theoretical Chemistry, vol. 986, pp. 14–24, 2012.
[55]  G. W. Wang and H. Hattori, “Reaction of adsorbed carbon monoxide with hydrogen on magnesium oxide,” Journal of the Chemical Society, Faraday Transactions 1, vol. 80, pp. 1039–1047, 1984.
[56]  G. Bilalbegovi?, “Structural and electronic properties of MgO nanotube clusters,” Physical Review B, vol. 70, no. 4, Article ID 045407, 6 pages, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133