全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Dynamics Simulation of VEGFR2 with Sorafenib and Other Urea-Substituted Aryloxy Compounds

DOI: 10.1155/2013/739574

Full-Text   Cite this paper   Add to My Lib

Abstract:

The binding mode of sorafenib with VEGFR2 was studied using molecular docking and molecular dynamics method. The docking results show that sorafenib forms hydrogen bonds with Asp1046, Cys919, and Glu885 of VEGFR2 receptor. Molecular dynamics simulation suggests that the hydrogen bond involving Asp1046 is the most stable one, and it is almost preserved during all the MD simulation time. The hydrogen bond formed with Cys919 occurs frequently after 6?ns, while the bifurcated hydrogen bonds involving Glu885 occurs occasionally. Meantime, molecular dynamics simulations of VEGFR2 with 11 other urea-substituted aryloxy compounds have also been performed, and the results indicate that a potent VEGFR2 inhibitor should have lower interaction energy with VEGFR2 and create at least 2 hydrogen bonds with VEGFR2. 1. Introduction Vascular endothelial growth factor (VEGF) is an important signaling protein involved in both the growth of blood vessels from preexisting vasculature (angiogenesis) and the formation of the circulatory system (vasculogenesis). VEGF binding to tyrosine kinase receptors (VEGFR) can cause itself dimerization and become activated through transphosphorylation. There are three main subtypes of VEGFR: VEGFR1, VEGFR2, and VEGFR3. Among which VEGFR2 appears to mediate almost all of the known cellular responses to VEGF. Inhibiting the tyrosine kinase VEGFR2 signaling pathway may disrupt the angiogenesis process of solid tumor, thus blocking tumor growth and spread [1]. Therefore, the design of inhibitors targeting VEGFR2 is an attractive approach for the development of new therapeutic agents. Recently, lots of VEGR2 inhibitors have been reported. Among them sorafenib (codeveloped and comarketed by Bayer and Onyx pharmaceuticals as Nexavar) is one of the potent inhibitors of VEGFR in vitro and is approved by FDA for the treatment of advanced renal cell carcinoma and advanced primary liver cancer [2, 3]. Although sorafenib treatment of melanoma cell lines and tumor xenografts leads to cell death and tumor growth delay [4–6], it has little or no antitumor activity in advanced melanoma patients when used as a single agent [7]. Moreover, its water solubility is not satisfactory [8]. Thus, there are still needs to develop new VEGFR2 inhibitors. With the development of the computational software and hardware, the usage of in silico methods, such as docking [9], QSAR, pharmacophore modeling [10], and molecular dynamics method [11], has become essential to pharmaceutical research. Abreu et al. [12] have studied the VEGFR2-selective side-chain residue

References

[1]  K. Holmes, O. L. Roberts, A. M. Thomas, and M. J. Cross, “Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition,” Cellular Signalling, vol. 19, no. 10, pp. 2003–2012, 2007.
[2]  L. Lang, “FDA approves sorafenib for patients with inoperable liver cancer,” Gastroenterology, vol. 134, no. 2, p. 379, 2008.
[3]  M. N. Stein and K. T. Flaherty, “Sorafenib and sunitinib in renal cell carcinoma,” Clinical Cancer Research, vol. 13, no. 13, pp. 3765–3770, 2007.
[4]  V. C. Gray-Schopfer, M. Karasarides, R. Hayward, and R. Marais, “Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited,” Cancer Research, vol. 67, no. 1, pp. 122–129, 2007.
[5]  A. Sharma, N. R. Trivedi, M. A. Zimmerman, D. A. Tuveson, C. D. Smith, and G. P. Robertson, “Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors,” Cancer Research, vol. 65, no. 6, pp. 2412–2421, 2005.
[6]  C. K. Augustine, H. Toshimitsu, S.-H. Jung et al., “Sorafenib, a multikinase inhibitor, enhances the response of melanoma to regional chemotherapy,” Molecular Cancer Therapeutics, vol. 9, no. 7, pp. 2090–2101, 2010.
[7]  T. Eisen, T. Ahmad, K. T. Flaherty et al., “Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis,” British Journal of Cancer, vol. 95, no. 5, pp. 581–586, 2006.
[8]  L. Jain, S. Woo, E. R. Gardner et al., “Population pharmacokinetic analysis of sorafenib in patients with solid tumours,” British Journal of Clinical Pharmacology, vol. 72, no. 2, pp. 294–305, 2011.
[9]  C. Mu?oz, F. Adasme, J. H. Alzate-Morales, A. Vergara-Jaque, T. Kniess, and J. Caballero, “Study of differences in the VEGFR2 inhibitory activities between semaxanib and SU5205 using 3D-QSAR, docking, and molecular dynamics simulations,” Journal of Molecular Graphics and Modelling, vol. 32, pp. 39–48, 2012.
[10]  X. Chen, X. X. Liu, H. Huang, H. H. Hu, and F. C. Jiang, “Construction of pharmaeophore model of EGFR TK inhibitor,” Acta Physico-Chimica Sinica, vol. 24, pp. 281–288, 2008.
[11]  F. Luo, J. Gao, Y. H. Cheng, W. Cui, and M. J. Ji, “Interaction mechanisms of inhibitors of glucoamylase by molecular dynamics simulations and free energy calculations,” Acta Physico-Chimica Sinica, vol. 28, no. 9, pp. 2191–2201, 2012.
[12]  R. M. V. Abreu, H. J. C. Froufe, M. J. R. Queiroz, and I. C. F. Ferreira, “Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina,” Chemical Biology & Drug Design, vol. 79, no. 4, pp. 530–534, 2012.
[13]  K. An, X. J. Chai, F. Xue, Y. Wang, and T. Zhang, “Study on docking and molecular dynamics simulation between VEGFR-2 and the inhibitor sunitinib,” Acta Chimica Sinica, vol. 70, no. 10, pp. 1232–1236, 2012.
[14]  A. Garofalo, L. Goossens, P. Six et al., “Impact of aryloxy-linked quinazolines: a novel series of selective VEGFR-2 receptor tyrosine kinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 7, pp. 2106–2112, 2011.
[15]  D. S. La, J. Belzile, J. V. Bready et al., “Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis,” Journal of Medicinal Chemistry, vol. 51, no. 6, pp. 1695–1705, 2008.
[16]  Glide, Version 5.5, Schr?dinger, LLC, New York, NY, USA, 2009.
[17]  A. W. Schuettelkopf and D. M. F. van Aalten, “PRODRG: a tool for high-throughput crystallography of protein-ligand complexes,” Acta Crystallographica D, vol. 60, pp. 1355–1363, 2004.
[18]  B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008.
[19]  D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “GROMACS: fast, flexible, and free,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005.
[20]  E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: a package for molecular simulation and trajectory analysis,” Journal of Molecular Modeling, vol. 7, no. 8, pp. 306–317, 2001.
[21]  H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: a message-passing parallel molecular dynamics implementation,” Computer Physics Communications, vol. 91, no. 1–3, pp. 43–56, 1995.
[22]  C. Oostenbrink, T. A. Soares, N. F. A. van der Vegt, and W. F. van Gunsteren, “Validation of the 53A6 GROMOS force field,” European Biophysics Journal, vol. 34, no. 4, pp. 273–284, 2005.
[23]  N. Sharifi, E. Hame, M. A. Lill et al., “A bifunctional colchicinoid that binds to the androgen receptor,” Molecular Cancer Therapeutics, vol. 6, no. 8, pp. 2328–2336, 2007.
[24]  MacroModel, Version 9.7, Schr?dinger, LLC, New York, NY, USA, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133