全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mathematical Modeling and Analysis of Nonlinear Enzyme Catalyzed Reaction Processes

DOI: 10.1155/2013/931091

Full-Text   Cite this paper   Add to My Lib

Abstract:

A mathematical model for the nonlinear enzymatic reaction process is discussed. An approximate analytical expression of concentrations of substrate, enzyme, and free enzyme-product is obtained using homotopy perturbation method (HPM). The main objective is to propose an analytical solution, which does not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to analyze the effect of different parameters. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation. 1. Introduction The importance of biocatalytic processes and reactions for organic synthesis and the pharmaceutical food and cosmetics industry has been constantly growing during the last few years [1, 2]. From a synthetic point of view, enzymes are highly efficient catalysts for an extremely broad palette of reactions [3]. Enzymes of one type, but from different origins, are specialized for substrates, positions in substrates, and products [4]. Enzyme reactions do not follow the law of mass action directly. The rate of the reaction only increases to a certain extent as the concentration of substrate increases. The maximum reaction rate is reached at high substrate concentration due to enzyme saturation. This is in contrast to the law of mass action that states that the reaction rate increases as the concentration of substrate increases [5]. Various simplified analytical models have been developed over the last 20 years. In brief, the analysis involves the construction and solution of reaction/diffusion differential equations, resulting in the development of approximate analytical expressions for [6, 7] nonlinear enzyme catalyzed reaction processes. The simplest model that explains the kinetic behaviour of enzyme reactions is the classic 1913 model of Michaelis and Menten [8] which is widely used in biochemistry for many types of enzymes. The Michaelis-Menten model is based on the assumption that the enzyme binds the substrate to form an intermediate complex which then dissociates to form the final product and release the enzyme in its original form. The schematic representation of this two-step process is given by where , , and are constant parameters associated with the rates of the reaction. Note that it is generally assumed that the second step of the reaction equation (1) is irreversible. In reality, this is not always the case. Typically, reaction rates are measured under the condition that the product is continually removed, which prevents the reverse reaction

References

[1]  A. Beloqui, P. D. de María, P. N. Golyshin, and M. Ferrer, “Recent trends in industrial microbiology,” Current Opinion in Microbiology, vol. 11, no. 3, pp. 240–248, 2008.
[2]  B. M. Nestl, B. A. Nebel, and B. Hauer, “Recent progress in industrial biocatalysis,” Current Opinion in Chemical Biology, vol. 15, no. 2, pp. 187–193, 2011.
[3]  C. M. Clouthier and J. N. Pelletier, “Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis,” Chemical Society Reviews, vol. 41, no. 4, pp. 1585–1605, 2012.
[4]  U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, and K. Robins, “Engineering the third wave of biocatalysis,” Nature, vol. 485, pp. 185–194, 2012.
[5]  J. Keener and J. Sneyd, Mathematical Physiology, Springer, New York, NY, USA, 1998.
[6]  M. E. G. Lyons, J. C. Greer, C. A. Fitzgerald, T. Bannon, and P. N. Barlett, “Reaction/diffusion with Michaelis-Menten kinetics in electroactive polymer films. Part 1. The steady-state amperometric response,” Analyst, vol. 121, no. 6, pp. 715–731, 1996.
[7]  M. E. G. Lyons, T. Bannon, G. Hinds, and S. Rebouillat, “The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences,” Analyst, vol. 123, p. 1947, 1998.
[8]  L. Michaelis and M. Menten, “Die Kinetik der Invertinwirkung,” Biochemische Zeitschrift, vol. 49, p. 333, 1913.
[9]  A. Fersht, Enzyme Structure Mechanism, W.H. Freeman, New York, NY, USA, 2nd edition, 1985.
[10]  K. M. Plowman, Enzyme Kinetics, McGraw-Hill, New York, NY, USA, 1972.
[11]  J. Hurlebaus, A Pathway Modeling Tool for Metabolic Engineering, Institute für Biotechnologie Jülich-3912 Bundesrepublik Deutschland, 2001.
[12]  J. D. Murray, Mathematical Biology, Springer, Berlin, Germany, 1989.
[13]  J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998.
[14]  J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons & Fractals, vol. 26, no. 3, pp. 695–700, 2005.
[15]  J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87–88, 2006.
[16]  P. D. Ariel, “Homotopy perturbation method and the natural convection flow of a third grade fluid through a circular tube,” Nonlinear Science Letters A, vol. 1, pp. 43–52, 2010.
[17]  D. D. Ganji and M. Rafei, “Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method,” Physics Letters A, vol. 356, no. 2, pp. 131–137, 2006.
[18]  A. Golbabai and B. Keramati, “Modified homotopy perturbation method for solving Fredholm integral equations,” Chaos, Solitons & Fractals, vol. 37, no. 5, pp. 1528–1537, 2008.
[19]  M. Ghasemi, M. T. Kajani, and E. Babolian, “Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 446–449, 2007.
[20]  J. Biazar and H. Ghazvini, “He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind,” Chaos, Solitons & Fractals, vol. 39, no. 2, pp. 770–777, 2009.
[21]  Z. Odibat and S. Momani, “A reliable treatment of homotopy perturbation method for Klein-Gordon equations,” Physics Letters A, vol. 365, no. 5-6, pp. 351–357, 2007.
[22]  M. S. H. Chowdhury and I. Hashim, “Solutions of time-dependent Emden-Fowler type equations by homotopy-perturbation method,” Physics Letters A, vol. 368, no. 3-4, pp. 305–313, 2007.
[23]  J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141–1199, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133