The quantum-mechanical tunneling is often important in low-energy reactions, which involve motion of light nuclei, occurring in condensed phase. The potential energy profile for such processes is typically represented as a double-well potential along the reaction coordinate. In a potential of this type defining reaction probabilities, rigorously formulated only for unbound potentials in terms of the scattering states with incoming/outgoing scattering boundary conditions, becomes ambiguous. Based on the analysis of a rectangular double-well potential, a modified expression for the reaction probabilities and rate constants suitable for arbitrary double- (or multiple-) well potentials is developed with the goal of quantifying tunneling. The proposed definition involves energy eigenstates of the bound potential and exact quantum-mechanical transmission probability through the barrier region of the corresponding scattering potential. Applications are given for several model systems, including proton transfer in a HO–H–CH3 model, and the differences between the quantum-mechanical and quasiclassical tunneling probabilities are examined. 1. Introduction There is great interest in understanding the role of quantum-mechanical (QM) effects on reactivity at low temperature in complex systems, such as liquids [1], proteins [2], at surfaces [3], and so forth. One example, which motivated many theoretical investigations [4], is the unusually high experimental kinetic isotope effect ( ) of the transferring hydrogen/deuterium substitution on the reaction rate constant in soybean lipoxygenase-1 [5], attributed to QM tunneling as the dominant reaction mechanism. A few other examples, where tunneling defines the reaction rate are isomerization of methylhydroxycarbene [6] and reaction of hydroxyl radical with methanol [7]. To understand the role of tunneling for a specific system a typical approach is to construct an electronic potential energy profile of a double-well character, along one-dimensional reaction coordinate, and to compute tunneling probabilities using the quasiclassical Wentzel-Kramers-Brillouin (WKB) approximation. This was done, for example, in recent studies of the barrier shape effect on the classical and QM contributions to reactivity in enzyme catalysis [8–10] and in a study of the tunneling control of reactivity in carbenes [6]. Our goal here is to define and analyze QM reaction probabilities and thermal reaction rate constants in the bound potentials in a more rigorous way than the WKB theory. There are two QM effects that should be considered: (i)
References
[1]
X.-Z. Li, B. Walker, and A. Michaelides, “Quantum nature of the hydrogen bond,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 16, pp. 6369–6373, 2011.
[2]
M. J. Sutclie and N. S. Scrutton, “A new conceptual framework for enzyme catalysis,” European Journal of Biochemistry, vol. 269, no. 13, pp. 3096–3102, 2002.
[3]
A. P. Jardine, E. Y. M. Lee, D. J. Ward et al., “Determination of the quantum contribution to the activated motion of hydrogen on a metal surface: H/Pt(111),” Physical Review Letters, vol. 105, no. 13, Article ID 136101, 2010.
[4]
S. S. Iyengar, I. Sumner, and J. Jakowski, “Hydrogen tunneling in an enzyme active site: a quantum wavepacket dynamical perspective,” The Journal of Physical Chemistry B, vol. 112, no. 25, pp. 7601–7613, 2008.
[5]
M. J. Knapp, K. Rickert, and J. P. Klinman, “Temperature-dependent isotope effects in soybean Lipoxygenase-1: correlating hydrogen tunneling with protein dynamics,” Journal of the American Chemical Society, vol. 124, no. 15, pp. 3865–3874, 2002.
[6]
P. R. Schreiner, H. P. Reisenauer, D. Ley, D. Gerbig, C. Wu, and W. D. Allen, “Methylhydroxycarbene: tunneling control of a chemical reaction,” Science, vol. 332, no. 6035, pp. 1300–1303, 2011.
[7]
R. J. Shannon, M. A. Blitz, A. Goddard, and D. E. Heard, “Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling,” Nature Chemistry, vol. 5, no. 9, pp. 745–749, 2013.
[8]
S. Hay, C. R. Pudney, T. A. McGrory, J. Pang, M. J. Sutcliffe, and N. S. Scrutton, “Barrier compression enhances an enzymatic hydrogen-transfer reaction,” Angewandte Chemie—International Edition, vol. 48, no. 8, pp. 1452–1454, 2009.
[9]
S. Hay, L. O. Johannissen, M. J. Sutclie, and N. S. Scrutton, “Barrier compression and its contribution to both classical and quantum mechanical aspects of enzyme catalysis,” Biophysical Journal, vol. 98, no. 1, pp. 121–128, 2010.
[10]
S. Hay and N. S. Scrutton, “Good vibrations in enzyme-catalysed reactions,” Nature Chemistry, vol. 4, no. 3, pp. 161–168, 2012.
[11]
R. G. Newton, Scattering Theory of Waves and Particles, Springer, New York, NY, USA, 1982.
[12]
W. H. Miller, S. D. Schwartz, and J. W. Tromp, “Quantum mechanical rate constants for bimolecular reactions,” The Journal of Chemical Physics, vol. 79, no. 10, pp. 4889–4898, 1983.
[13]
D. E. Makarov and H. Metiu, “The reaction rate constant in a system with localized trajectories in the transition region: classical and quantum dynamics,” The Journal of Chemical Physics, vol. 107, no. 19, pp. 7787–7799, 1997.
[14]
J. Y. Ge and J. Zhang, “Quantum mechanical tunneling through a time-dependent barrier,” The Journal of Chemical Physics, vol. 105, no. 19, pp. 8628–8632, 1996.
[15]
W. H. Miller, “Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants,” The Journal of Chemical Physics, vol. 61, no. 5, pp. 1823–1834, 1974.
[16]
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Butterworth-Heinemann, Oxford, UK, 1999.
[17]
J. H. Weiner, “Quantum rate theory for a symmetric double-well potential,” The Journal of Chemical Physics, vol. 68, no. 5, pp. 2492–2506, 1978.
[18]
E. Madelung, “Quantentheorie in hydrodynamischer form,” Zeitschrift für Physik, vol. 40, no. 3-4, pp. 322–326, 1927.
[19]
B. Poirier, “Reconciling semiclassical and Bohmian mechanics. I. Stationary states,” The Journal of Chemical Physics, vol. 121, no. 10, pp. 4501–4515, 2004.
[20]
N. Rom, E. Engdahl, and N. Moiseyev, “Tunneling rates in bound systems using smooth exterior complex scaling within the framework of the finite basis set approximation,” The Journal of Chemical Physics, vol. 93, no. 5, pp. 3413–3419, 1990.
[21]
J. Vanicek, W. H. Miller, J. F. Castillo, and F. J. Aoiz, “Quantum-instanton evaluation of the kinetic isotope effects,” The Journal of Chemical Physics, vol. 123, no. 5, Article ID 054108, 2005.
[22]
I. R. Craig and D. E. Manolopoulos, “Chemical reaction rates from ring polymer molecular dynamics,” The Journal of Chemical Physics, vol. 122, no. 8, Article ID 084106, 2005.
[23]
A. V. Turbiner, “Double well potential: perturbation theory, tunneling, WKB (beyond instantons),” International Journal of Modern Physics A, vol. 25, no. 2-3, pp. 647–658, 2010.
[24]
J. H. Weiner, “Transmission function vs energy splitting in tunneling calculations,” The Journal of Chemical Physics, vol. 69, no. 11, pp. 4743–4849, 1978.
[25]
D. Bohm, “A suggested interpretation of the quantum theory in terms of “hidden” variables. I,” Physical Review, vol. 85, no. 2, pp. 166–193, 1952.
[26]
Maple 14 and 16. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Canada, http://www.maplesoft.com/.
[27]
D. T. Colbert and W. H. Miller, “A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method,” The Journal of Chemical Physics, vol. 96, no. 3, pp. 1982–1991, 1992.
[28]
D. J. Tannor and D. E. Weeks, “Wave packet correlation function formulation of scattering theory: the quantum analog of classical S-matrix theory,” The Journal of Chemical Physics, vol. 98, no. 5, pp. 3884–3893, 1993.
[29]
R. Koslo, “Time-dependent quantum-mechanical methods for molecular dynamics,” The Journal of Physical Chemistry, vol. 92, no. 8, pp. 2087–2100, 1988.
[30]
M. D. Feit, J. A. Fleck Jr., and A. Steiger, “Solution of the Schr?dinger equation by a spectral method,” Journal of Computational Physics, vol. 47, no. 3, pp. 412–433, 1982.
[31]
Y. Shao, L. F. Molnar, Y. Jung et al., “Advances in methods and algorithms in a modern quantum chemistry program package,” Physical Chemistry Chemical Physics, vol. 8, no. 27, pp. 3172–3191, 2006.