全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research on the Behavior of the Steel Plated Shear Wall by Finite Element Method

DOI: 10.1155/2013/756253

Full-Text   Cite this paper   Add to My Lib

Abstract:

From the early’ 70s till today, steel shear walls have been used as the primary lateral force resisting system in some of the significant buildings around the world. To assist understanding the behavior of this system, there have been research programs in USA, Canada, Japan, and UK. This research presents the dynamic and cyclic behavior of steel plated shear wall. In order to simulate the behavior of such a wall structure, finite element method of analysis is implemented. Several analytical models are implemented, in order to obtain the dynamic as well as cyclic behavior of such system. The material nonlinearity as well as geometrical nonlinearity along with the postbuckling behavior of steel plate subjected to cyclic loading has also been employed. The hysteresis diagrams of steel shear wall system in terms of storey shear drift are presented. The results obtained from the analyses are compared to some experimental results reported by other researchers previously. The nonlinear time history analysis of such system is carried out for different seismic response spectra. Finally, the significant factors and parameters of the steel plated shear wall which affect the overall behavior of such system are acknowledged and their effects were recognized. 1. Introduction Behavior of steel plate shear wall (SPSW) system appears to be similar to the behavior of the plate girder in which the beam acts as stiffener of the girder and column acts as flange of the girder, although columns appear to be much stiffer than plate girder flanges. The steel plate in the wall system is designed to withstand seismic loads or wind forces. The load transfer in the system is through the tension field action, in which the shear forces in the panel are resisted by the plate. As Basler [1] demonstrated for plate girders, the postbuckling tension field action of steel shear wall can supply significant strength, stiffness, and ductility. Performing many experiments on the steel shear wall system by the researchers [2–6], nowadays this lateral system is being utilized in the structural steel frames with thin plates and in most cases without stiffeners. The diagonal compression zone buckles when the plate is loaded in shear, and in the meantime the other diagonal zone will yield in tension. Following the unloading and reloading of the system, the buckled zone will transform back into diagonal tension zone. Even though parts of the plate buckle, the overall behavior of the SPSW system will remain stable during the cyclic loading, and consequently for the stability reasons, it is not

References

[1]  K. Basler, “Strength of plate girders in shear,” ASCE Journal of the Structural Division, vol. 87, no. 7, pp. 150–180, 1961.
[2]  P. A. Timler and G. L. Kulak, “Experimental study of steel plate shear walls,” Structural Engineering Report No. 114, Department of Civil Engineering University of Alberta, Edmonton, Alberta, Canada, 1983.
[3]  R. G. Driver, G. L. Kulak, A. E. Elwi, and D. J. L. Kennedy, “FE and simplified models of steel plate shear wall,” Journal of Structural Engineering, vol. 124, no. 2, pp. 121–130, 1998.
[4]  A. S. Lubell, H. G. L. Prion, C. E. Ventura, and M. Rezai, “Unstiffened steel plate shear wall performance under cyclic loading,” Journal of Structural Engineering, vol. 126, no. 4, pp. 453–460, 2000.
[5]  M. Elgaaly and Y. Liu, “Analysis of thin-steel-plate shear walls,” Journal of Structural Engineering, vol. 123, no. 11, pp. 1487–1496, 1997.
[6]  A. Astaneh-Asl, Seismic Behavior and Design of Steel Sheer Walls, Structural Steel Educational Council Technical Information and Product Service, 2001.
[7]  NBCC, National Building Code of Canada, Ontario, Canada, 2010.
[8]  American Institute of Steel Construction, “Seismic provision for structural steel building,” AISC 341-05, ANSI, Washington, DC, USA, 2005.
[9]  L. J. Thorburn, G. L. Kulak, and C. J. Montgomery, “Analysis of steel plate shear walls,” Structural Engineering Report No. 107, Department of Civil Engineering, University of Alberta, Alberta, Canada, 1983.
[10]  P. A. Timler, “Design procedures development, analytical verification and cost valuation of steel plate shear wall structures,” Earthquake Engineering Research Facility Technical Report No. 98-01, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada, 1998.
[11]  ANSYS, Finite Element Method Software, SAS IP, Release 5. 6, 1999.
[12]  ATC-24, Guidelines of Cyclic Seismic Testing on Components For Steel Structures, Applied Technology Council, Redwood City, Calif, USA, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133