Advances in the area of structural testing have in recent years led to hybrid simulation, that is, the advanced structural experimental method that encompasses the traditional pseudodynamic testing method and relies on substructuring to offer the advantage of combining the actual experimental testing of selected parts of the structure to the numerical treatment of the rest. The experimental part usually involves simplified test setups and structural elements with few degrees of freedom. Thus, issues of cross-coupling present in testing MDOF structures have not been treated adequately so far. In addition, it has been realized that when it comes to testing very stiff structures, in which the above phenomena are accentuated, further problems arise in relation to the quality of actuator control (accuracy of imposed displacements and stability of the test process). Few studies have focused on these issues, thus necessitating more work in the future. The present study provides an overview of the approaches that have been adopted so far, reports on recent advancements, and raises the points in which more research is needed. 1. Introduction Extensive research and application of the pseudodynamic testing method in the 35 years that followed its inception, the “computer-actuator online testing method” [1, 2], have not only established it as one of the “standard” methods for seismic testing, but its application has also been extended towards new areas. By leveraging equipment commonly found at structural laboratories, the method has proven very competitive against costly shaking table testing, especially regarding the simulation of full-scale structures that respond in the nonlinear regime. With the exception, maybe, of its application to testing rate-dependent materials and distributed-mass systems, many of its initial weaknesses have been successfully treated: implicit or explicit/implicit methods for the integration of the equation of motion in time are now available, experimental errors have been minimized/compensated thanks to the deployment of high accuracy sensors or compensation techniques, and the staggered, ramp-hold-type, application of target displacements that introduced force-relaxation issues has been substituted by the continuous movement of the actuators (continuous pseudodynamic testing method). Furthermore, the extension of the method based on the concept of substructuring (i.e., the discretization of selected parts of the structure under test into actively interacting physical and numerical models (substructures)) forming a, so-called, “hybrid
References
[1]
M. Hakuno, M. Shidawara, and T. Hara, “Dynamic destructive test of a cantilever beam controlled by an analog computer,” Proceedings of the Japan Society of Civil Engineers, vol. 1969, no. 171, pp. 1–9, 1969.
[2]
K. Takanashi, K. Udagawa, and H. Tanaka, “Earthquake response analysis of steel frames by computer-actuator on-line system,” in Proceedings of the 5th Japan Earthquake Engineering Symposium, pp. 1321–1328, Architecture Institute of Japan (AIJ), Tokyo, Japan, 1978.
[3]
F. Seible, G. Hegemier, and A. Igarashi, “Simulated seismic laboratory load testing of full-scale buildings,” Earthquake Spectra, vol. 12, no. 1, pp. 57–86, 1996.
[4]
M. V. Sivaselvan, A. M. Reinhorn, X. Shao, and S. Weinreber, “Dynamic force control with hydraulic actuators using added compliance and displacement compensation,” Earthquake Engineering and Structural Dynamics, vol. 37, no. 15, pp. 1785–1800, 2008.
[5]
A. Igarashi, F. Seible, and G. A. Hegemeier, “Development of the pseudodynamic technique for testing a full-scale 5-story shear wall structure,” in Proceedings of the U.S. Japan Seminar on the Development and Future Directions of Structural Testing Techniques, Honolulu, Hawaii, USA, 1990.
[6]
T. Elkhoraibi and K. M. Mosalam, “Towards error-free hybrid simulation using mixed variables,” Earthquake Engineering and Structural Dynamics, vol. 36, no. 11, pp. 1497–1522, 2007.
[7]
H. Kim, “Extending hybrid simulation methods in OpenFresco software framework,” Tech. Rep. CE-299, University of California, Berkeley, Calif, USA, 2009.
[8]
C. A. Whyte and B. Stojadinovic, “Hybrid simulation of the seismic response of squat reinforced concrete shear walls,” PEER Report 2013/02, 2013.
[9]
P. Pan, M. Nakashima, and H. Tomofuji, “Online test using displacement-force mixed control,” Earthquake Engineering and Structural Dynamics, vol. 34, no. 8, pp. 869–888, 2005.
[10]
N. Nakata, B. F. Spencer, and A. S. Elnashai, “Mixed load/displacement control strategy for hybrid simulation,” in Proceedings of the 4th International Conference on Earthquake Engineering, Taipei, Taiwan, 2006.
[11]
M. Ahmadizadeh and G. Mosqueda, “Hybrid simulation with improved operator-splitting integration using experimental tangent stiffness matrix estimation,” Journal of Structural Engineering, vol. 134, no. 12, pp. 1829–1838, 2008.
[12]
C.-C. Hung and S. El-Tawil, “A method for estimating specimen tangent stiffness for hybrid simulation,” Earthquake Engineering and Structural Dynamics, vol. 38, no. 1, pp. 115–134, 2009.
[13]
C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Mathematics of Computation, vol. 19, pp. 577–593, 1965.
[14]
M. H. Scott and G. L. Fenves, “A krylov subspace accelerator newton algorithm,” in Proceedings of the 4th International Conference on Earthquake Engineering, Taipei, Taiwan, 2006.
[15]
H. Kim, B. Stojadinovic, T. Y. Yang, and A. Schellenberg, “Alternative control strategies in hybrid simulation,” in Proceedings of the 2nd EFAST Workshop & 4th International Conference on Advances in Experimental Structural Engineering, JRC, ELSA, Ispra, Italy, 2011.
[16]
X. Palios, E. Strepelias, and S. N. Bousias, “A novel strategy for the hybrid simulation of stiff structures,” in Proceedings of the 5th International Conference on Advances in Experimental Structural Engineering, Taipei, Taiwan, 2013.
[17]
C. R. Hart, D. A. Kuchma, L. N. Lowes, D. E. Lehman, K. P. Marley, and A. C. Birely, “Testing of RC Walls using advanced load-control and instrumentation methods,” in Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 2008.