全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Meta-Analysis of Soccer Injuries on Artificial Turf and Natural Grass

DOI: 10.1155/2013/380523

Full-Text   Cite this paper   Add to My Lib

Abstract:

The goal of this investigation was to determine if playing or training on third-generation artificial turf (AT) surfaces increases the incidence rate of injuries compared to natural grass (NG) surfaces. This was accomplished by a meta-analysis performed on previously published research. Eight studies met the criteria of competitive soccer players, participation on both surfaces, and presentation of both exposure time and injury occurrence. Exposure time and injury incidence values were used to generate injury rate ratios (IRRs, AT/NG) for all injuries as well as specific injuries. Subgroup analyses were also performed by condition (match or training), gender, and age (youth or adult). The overall IRR was 0.86 ( ) suggesting a lower injury risk on AT than NG. However, there was considerable heterogeneity between studies. Analyses of individual injuries and subgroups found that in many cases IRR values were significantly less than 1.0. In no case was the IRR significantly greater than 1.0. Based on this, it appears that the risk of sustaining an injury on AT under some conditions might be lowered compared to NG. However, until more is known about how issues such as altered playing styles affect injury incidence, it is difficult to make firm conclusions regarding the influence of AT on player safety. 1. Introduction Unfortunately, acute injuries are far too common in the sport of soccer. Sprains and ruptures of the ligaments supporting the ankle and knee joints as well as muscle strains occur quite often. In some cases, joint injuries are sustained through contact with another player. A classic example occurs when one player collides with another, applying excessive force to the lateral side of the opponent’s knee. This often results in damage to the medial collateral ligament, lateral meniscus, and the anterior cruciate ligament (ACL). However, a substantial number of soccer injuries occur through noncontact mechanisms. In these cases, an athlete may plant his or her foot then stop, cut, or turn. As the body changes direction while the foot is stationary, the knee and/or ankle experiences torque. As a result, ligament structures can be strained or ruptured. Researchers have identified a number of risk factors for noncontact injuries. These include intrinsic factors such as proprioception, muscular strength, ligament properties, and biomechanics as well as extrinsic factors such as the playing surface and other environmental conditions. Several studies have focused on this latter factor as important, specifically the use of artificial turf playing

References

[1]  P. W. Cawley, R. S. Heidt Jr., P. E. Scranton Jr., G. M. Losse, and M. E. Howard, “Physiologic axial load, frictional resistance, and the football shoe-surface interface,” Foot and Ankle International, vol. 24, no. 7, pp. 551–556, 2003.
[2]  G. A. Livesay, D. R. Reda, and E. A. Nauman, “Peak torque and rotational stiffness developed at the shoe-surface interface: the effect of shoe type and playing surface,” The American Journal of Sports Medicine, vol. 34, no. 3, pp. 415–422, 2006.
[3]  K. D. Bowers Jr. and R. B. Martin, “Cleat surface friction on new and old astroturf,” Medicine and Science in Sports and Exercise, vol. 7, no. 2, pp. 132–135, 1975.
[4]  J. W. Powell and M. Schootman, “A multivariate risk analysis of selected playing surfaces in the National Football League: 1980 to 1989. An epidemiologic study of knee injuries,” The American Journal of Sports Medicine, vol. 20, no. 6, pp. 686–694, 1992.
[5]  C. W. Fuller, J. Ekstrand, A. Junge et al., “Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries,” The British Journal of Sports Medicine, vol. 40, no. 3, pp. 193–201, 2006.
[6]  H. Aoki, T. Kohno, H. Fujiya et al., “Incidence of injury among adolescent soccer players: a comparative study of artificial and natural grass turfs,” Clinical Journal of Sport Medicine, vol. 20, no. 1, pp. 1–7, 2010.
[7]  J. Bj?rneboe, R. Bahr, and T. E. Andersen, “Risk of injury on third-generation artifi cial turf in Norwegian professional football,” The British Journal of Sports Medicine, vol. 44, no. 11, pp. 794–798, 2010.
[8]  J. Ekstrand, M. H?gglund, and C. W. Fuller, “Comparison of injuries sustained on artificial turf and grass by male and female elite football players,” Scandinavian Journal of Medicine and Science in Sports, vol. 21, no. 6, pp. 824–832, 2011.
[9]  J. Ekstrand, T. Timpka, and M. H?gglund, “Risk of injury in elite football played on artificial turf versus natural grass: a prospective two-cohort study,” The British Journal of Sports Medicine, vol. 40, no. 12, pp. 975–980, 2006.
[10]  C. W. Fuller, R. W. Dick, J. Corlette, and R. Schmalz, “Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 1: match injuries,” The British Journal of Sports Medicine, vol. 41, supplement 1, pp. i20–i26, 2007.
[11]  C. W. Fuller, R. W. Dick, J. Corlette, and R. Schmalz, “Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 2: training injuries,” The British Journal of Sports Medicine, vol. 41, supplement 1, pp. i27–i32, 2007.
[12]  T. Soligard, R. Bahr, and T. E. Andersen, “Injury risk on artificial turf and grass in youth tournament football,” Scandinavian Journal of Medicine and Science in Sports, vol. 22, no. 3, pp. 356–361, 2012.
[13]  K. Steffen, T. E. Andersen, and R. Bahr, “Risk of injury on artificial turf and natural grass in young female football players,” The British Journal of Sports Medicine, vol. 41, supplement 1, pp. i33–i37, 2007.
[14]  M. R. Villwock, E. G. Meyer, J. W. Powell, A. J. Fouty, and R. C. Haut, “Football playing surface and shoe design affect rotational traction,” The American Journal of Sports Medicine, vol. 37, no. 3, pp. 518–525, 2009.
[15]  K. R. Ford, N. A. Manson, B. J. Evans et al., “Comparison of in-shoe foot loading patterns on natural grass and synthetic turf,” Journal of Science and Medicine in Sport, vol. 9, no. 6, pp. 433–440, 2006.
[16]  W. Potthast, “Motion differences in goal kicking on natural and artificial soccer turf systems,” Footwear Science, vol. 2, no. 1, pp. 29–35, 2010.
[17]  D. McGhie and G. Ettema, “Biomechanical analysis of surface-athlete impacts on third-generation artificial turf,” The American Journal of Sports Medicine, vol. 41, no. 1, pp. 177–185, 2013.
[18]  H. Andersson, B. Ekblom, and P. Krustrup, “Elite football on artificial turf versus natural grass: movement patterns, technical standards, and player impressions,” Journal of Sports Sciences, vol. 26, no. 2, pp. 113–122, 2008.
[19]  J. Ronkainen, P. Osei-Owusu, J. Webster, A. Harland, and J. Roberts, “Elite player assessment of playing surfaces for football,” Procedia Engineering, vol. 34, pp. 837–842, 2012.
[20]  R. di Michele, A. M. di Renzo, S. Ammazzalorso, and F. Merni, “Comparison of physiological responses to an incremental running test on treadmill, natural grass, and synthetic turf in young soccer players,” Journal of Strength and Conditioning Research, vol. 23, no. 3, pp. 939–945, 2009.
[21]  M. G. Hughes, L. Birdsey, R. Meyers et al., “Effects of playing surface on physiological responses and performance variables in a controlled football simulation,” Journal of Sport Science, vol. 31, no. 8, pp. 878–886, 2013.
[22]  M. Nédélec, A. McCall, C. Carling, F. le Gall, S. Berthoin, and G. Dupont, “Physical performance and subjective ratings after a soccer-specific exercise simulation: comparison of natural grass versus artificial turf,” Journal of Sport Science, vol. 31, no. 5, pp. 529–536, 2013.
[23]  A. Sassi, A. Stefanescu, P. Menaspa, A. Bosio, M. Riggio, and E. Rampinini, “The cost of running on natural grass and artificial turf surfaces,” Journal of Strength and Conditioning Research, vol. 25, no. 3, pp. 606–611, 2011.
[24]  S. G. McLean and J. E. Samorezov, “Fatigue-induced acl injury risk stems from a degradation in central control,” Medicine and Science in Sports and Exercise, vol. 41, no. 8, pp. 1661–1672, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133