Arsenic, lead, and cadmium were determined in tap and bottled water samples consumed in the west part of Turkey at trace levels. Graphite furnace atomic absorption spectrometry (GFAAS) was used in all detections. All of the system parameters for each element were optimized to increase sensitivity. Pd-Mg mixture was selected as the best matrix modifier for As, while the highest signals were obtained for Pb and Cd in the case of Ni used as matrix modifier. Detection limits for As, Cd, and Pb were found to be 2.0, 0.036, and 0.25?ng/mL, respectively. 78 tap water and 17 different brands of bottled water samples were analyzed for their As, Cd, and Pb contents under the optimized conditions. In all water samples, concentration of cadmium was found to be lower than detection limits. Lead concentration in the samples analyzed varied between N.D. and 12.66 ± 0.68?ng/mL. The highest concentration of arsenic was determined as 11.54 ± 2.79?ng/mL. Accuracy of the methods was verified by using a certified reference material, namely, Trace Element in Water, 1643e. Results found for As, Cd, and Pb in reference materials were in satisfactory agreement with the certified values. 1. Introduction Our green planet has been contaminated from day to day by different contaminants. One of the most serious contaminant groups is the heavy metals. Our ecosystem has been contaminated by high concentration of heavy metals released into the biosphere by human activity. Industrial activities, energy production, construction, urban waste treatment, and vehicle exhaust are some of the sources causing large quantities of heavy metal contamination in atmosphere, water, and soil [1]. Arsenic has been listed as one of the human carcinogens by the International Agency for Research on Cancer (IARC) since 1980. There have been many studies in the literature to show the positive association between arsenic exposure and cancer in different countries including the USA, Taiwan, Bangladesh, and India [2]. Blander cancer [3], skin cancer [4], and lung cancer [5] are some of the cancer types associated to arsenic exposure by many researchers. In addition to carcinogenic effects, there are some noncarcinogenic effects of chronic arsenic exposure [2]. According to Tsai et al., long-term accumulated arsenic in adolescence may cause neurobehavioral effects and exposure to high amount of arsenic may affect behavior later in life. In addition, in the case of lead, effects will be more severe by synergistic behavior of arsenic and lead [6]. There are many sources of arsenic exposure. One of the big sources
References
[1]
K. Naeem, W. Yawar, P. Akhter, and I. Rehana, “Atomic absorption spectrometric determination of cadmium and lead in soil after total digestion,” Asia-Pacific Journal of Chemical Engineering, vol. 7, pp. 295–301, 2012.
[2]
S. Kapaj, H. Peterson, K. Liber, and P. Bhattacharya, “Human health effects from chronic arsenic poisoning—a review,” Journal of Environmental Science and Health Part A, vol. 41, no. 10, pp. 2399–2428, 2006.
[3]
C. Steinmaus, Y. Yuan, M. N. Bates, and A. H. Smith, “Case-control study of bladder cancer and drinking water arsenic in the western United States,” American Journal of Epidemiology, vol. 158, no. 12, pp. 1193–1201, 2003.
[4]
M. I. Luster and P. P. Simeonova, “Arsenic and urinary bladder cell proliferation,” Toxicology and Applied Pharmacology, vol. 198, no. 3, pp. 419–423, 2004.
[5]
H. F. Chiu, S. C. Ho, and C. Y. Yang, “Lung cancer mortality reduction after installation of tap-water supply system in an arseniasis-endemic area in Southwestern Taiwan,” Lung Cancer, vol. 46, no. 3, pp. 265–270, 2004.
[6]
S. Y. Tsai, H. Y. Chou, H. W. The, C. M. Chen, and C. J. Chen, “The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence,” NeuroToxicology, vol. 24, no. 4-5, pp. 747–753, 2003.
[7]
M. B. Dessuy, M. G. R. Vale, B. Welz, A. R. Borges, M. M. Silva, and P. B. Martelli, “Determination of cadmium and lead in beverages after leaching from pewter cups using graphite furnace atomic absorption spectrometry,” Talanta, vol. 85, no. 1, pp. 681–686, 2011.
[8]
H. C. Rezende, C. C. Nascentes, and N. M. M. Coelho, “Cloud point extraction for determination of cadmium in soft drinks by thermospray flame furnace atomic absorption spectrometry,” Microchemical Journal, vol. 97, no. 2, pp. 118–121, 2011.
[9]
J. A. Mendez, J. B. Garcia, R. M. P. Crecente, S. G. Martin, and C. H. Latorre, “A new flow injection preconcentration method based on multiwalled carbon nanotubes for the ETA-AAS determination of Cd in urine,” Talanta, vol. 85, pp. 2361–2367, 2011.
[10]
V. Verougstraete, D. Lison, and P. Hotz, “Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data,” Journal of Toxicology and Environmental Health Part B, vol. 6, no. 3, pp. 227–255, 2003.
[11]
S. J. S. Flora, P. Gautam, and P. Kushwaha, “Lead and ethanol co-exposure lead to blood oxidative stress and subsequent neuronal apoptosis in rats,” Alcohol and Alcoholism, vol. 47, pp. 92–101, 2012.
[12]
S. J. S. Flora, G. Saxena, and A. Mehta, “Reversal of lead-induced neuronal apoptosis by chelation treatment in rats: role of reactive oxygen species and intracellular Ca2+,” Journal of Pharmacology and Experimental Therapeutics, vol. 322, no. 1, pp. 108–116, 2007.
[13]
M. Ahamed and M. K. J. Siddiqui, “Environmental lead toxicity and nutritional factors,” Clinical Nutrition, vol. 26, no. 4, pp. 400–408, 2007.
[14]
J. O. Nriagu and J. M. Pacyna, “Quantitative assessment of worldwide contamination of air, water and soils by trace metals,” Nature, vol. 333, no. 6169, pp. 134–139, 1988.
[15]
S. Bakirdere and M. Yaman, “Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey,” Environmental Monitoring and Assessment, vol. 136, no. 1–3, pp. 401–410, 2008.
[16]
H. B. Ulusoy, M. Akay, and R. Gürkan, “Development of an inexpensive and sensitive method for the determination of low quantity of arsenic species in water samples by CPE-FAAS,” Talanta, vol. 85, no. 3, pp. 1585–1591, 2011.
[17]
J. Sardans, F. Montes, and J. Pe?uelas, “Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry,” Spectrochimica Acta, vol. 65, no. 2, pp. 97–112, 2010.
[18]
V. L. Atz and D. Pozebon, “Graphite furnace atomic absorption spectrometry (GFAAS) methodology for trace element determination in eye shadow and lipstick,” Atomic Spectroscopy, vol. 30, no. 3, pp. 82–91, 2009.
[19]
F. Chen, D. D. Xu, X. P. Tang, J. Cao, Y. T. Liu, and J. Deng, “Determination of nine hazardous elements in textiles by inductively coupled plasma optical emission spectrometer after microwave-assisted dilute nitric acid extraction,” Spectroscopy and Spectral Analysis, vol. 32, pp. 239–243, 2012.
[20]
M. Bing?l, G. Yentür, B. Er, and A. B. ?ktem, “Determination of some heavy metal levels in soft drinks from Turkey using ICP-OES method,” Czech Journal of Food Sciences, vol. 28, no. 3, pp. 213–216, 2010.
[21]
S. D'Ilio, C. Majorani, F. Petrucci, N. Violante, and O. Senofonte, “Method validation for the quantification of As, Cd, Hg and Pb in blood by ICP-MS for monitoring purposes,” Analytical Methods, vol. 2, no. 12, pp. 2049–2054, 2010.
[22]
M. G. Minnich, D. C. Miller, and P. J. Parsons, “Determination of As, Cd, Pb, and Hg in urine using inductively coupled plasma mass spectrometry with the direct injection high efficiency nebulizer,” Spectrochimica Acta, vol. 63, no. 3, pp. 389–395, 2008.
[23]
M. Yaman, M. Güne?, and S. Bakirdere, “Contamination of aluminium from cooking utensils and yogurt containers,” Bulletin of Environmental Contamination and Toxicology, vol. 70, no. 3, pp. 437–442, 2003.
[24]
M. Yaman and S. Bakirdere, “Identification of chemical forms of lead, cadmium and nickel in sewage sludge of waste water treatment facilities,” Mikrochimica Acta, vol. 141, no. 1-2, pp. 47–54, 2003.
[25]
M. Yaman and I. Akdeniz, “Effects of different chemical modifiers on the determination of arsenic by electrothermal atomic absorption spectrometry and application to the poultry and plant samples,” Trace Elements and Electrolytes, vol. 23, no. 4, pp. 237–241, 2006.
[26]
J. é. Surlève-Bazeille, M. Mercier, R. Tarroux et al., “Development of a microwave sample preparation method for the determination of arsenic in humus and moss samples by graphite furnace atomic absorption spectrometry,” Analusis, vol. 28, no. 9, pp. 830–834, 2000.
[27]
S. Pai, F. Lin, C. Tseng, and D. Sheu, “Optimization of heating programs of gfaas for the determination of Cd, Cu, Ni and pb in sediments using sequential extraction technique,” International Journal of Environmental Analytical Chemistry, vol. 50, pp. 193–205, 1993.
[28]
C. Blake and B. Bourqui, “Determination of lead and cadmium in food products by graphite furnace atomic absorption spectroscopy,” Atomic Spectroscopy, vol. 19, no. 6, pp. 207–213, 1998.
[29]
WHO, Guidelines For Drinking Water Quality, World Health Organization, Geneva, Switzerland, 3rd edition, 2004.
[30]
M. Buragohain, B. Bhuyan, and H. P. Sarma, “Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India,” Environmental Monitoring and Assessment, vol. 170, no. 1–4, pp. 345–351, 2010.
[31]
A. Karatepe, M. Soylak, and L. El?i, “Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry,” Journal of AOAC International, vol. 94, pp. 1617–1624, 2011.
[32]
C. Duran, H. B. Senturk, L. Elci, M. Soylak, and M. Tufekci, “Simultaneous preconcentration of Co(II), Ni(II), Cu(II), and Cd(II) from environmental samples on Amberlite XAD-2000 column and determination by FAAS,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 292–299, 2009.
[33]
I. Timur, B. F. Senkal, N. M. Karaaslan, B. Tulin, E. Cengiz, and M. Yaman, “Determination and removing of lead and nickel in water samples by solid phase extraction using a novel remazol black B-sulfonamide polymeric resin,” Current Analytical Chemistry, vol. 7, pp. 286–295, 2011.