全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phase Transformation of Zeolite P to Y and Analcime Zeolites due to Changing the Time and Temperature

DOI: 10.1155/2013/428216

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, the synthesis of template free zeolite P under hydrothermal condition was investigated. The effects of parameters such as Si/Al ratios (3–45), crystallization temperatures (80–160°C), and cry (40–60?h) on the synthesis of zeolite P were studied. The phase transformation of zeolite P to two types of high crystallinity Y and analcime zeolites due to change of temperature was observed. The effect of temperature on the achievement of two different zeolite types (Y and analcime) with a constant initial synthetic composition under organic free synthesis of zeolite P was studied. The zeolitic products were characterized by X-ray diffraction, scanning electron microscopy, and IR spectroscopy techniques. 1. Introduction Zeolitic materials are microporous high-internal-surface crystalline and hydrated aluminosilicates of alkali and alkaline earth cations with an infinite open and rigid three-dimensional structure [1]. Breck et al. in 1956 reported the synthesis of “species very similar to gismodine” [2]. Later these types of zeolites were thought to belong to the harmotome-phillipsite group, which is called P zeolites [3, 4]. Zeolite P is the synthetic analogue of the GIS-type (gobbinsite-NaP1) zeolites and has a two-dimensional pore system with two intersecting 8-ring channels [5]. Zeolite P with Si/Al ratio of 1 has been described as a commercially detergent builder [6, 7]. On the other hand, the analcime structure is made up of small pores that are arranged in four-, six-, and eightfold ring. The crystal structure of analcime for the first time was determined by Taylor [8] and refined by Calleri and Ferraris [9]. Analcime may be used in selective adsorption reactions and in heterogeneous catalysis. Zeolite Y is in the faujasite (FAU) family with a framework containing double 6 rings linked through sodalite cages that generate supercages with average pore diameter of 7.4??. There are several applications of FAU zeolites such as fluid cracking catalysts and sorbents for volatile organic removal [10]. Phase transformation processes include the transition from one structure or symmetry into another structure or symmetry, and the intermediate phases can be observed by analysis techniques. This means that from an initial gel with defined composition, one can obtain two or more pure types of zeolite depending on the conditions of crystallization such as alkalinity, crystallization temperature and time, and organic additives (template). However, such a possibility may represent a serious disadvantage in the attempt to achieve the desired group of

References

[1]  H. Kazemian, H. Modarres, and H. G. Mobtaker, “Iranian natural clinoptilolite and its synthetic zeolite P for removal of cerium and thorium from nuclear wastewaters,” Journal of Radioanalytical and Nuclear Chemistry, vol. 258, no. 3, pp. 551–556, 2003.
[2]  D. W. Breck, W. G. Eversole, and R. M. Milton, “New synthetic crystalline zeolites,” Journal of the American Chemical Society, vol. 78, no. 10, pp. 2338–2339, 1956.
[3]  W. C. Beard, “Linde type B zeolites and related mineral and synthetic phases,” Advances in Chemistry, vol. 101, pp. 237–249, 1971.
[4]  E. M. Flanigen, H. Khatami, and H. A. Szymanski, “Infrared structural studies of zeolite frameworks,” Advances in Chemistry, vol. 101, pp. 201–229, 1971.
[5]  R. Szostak, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, NY, USA, 1992.
[6]  A. Araya, “The invention describes a process for preparing P zeolites in which aluminate and silicate solutions are reacted in the presence of a P-zeolite seed,” US Pattent. 5362466, 1994.
[7]  C. J. Adams, A. Araya, S. W. Carr et al., “Zeolite map: a new detergent builder,” Studies in Surface Science and Catalysis, vol. 98, pp. 206–207, 1995.
[8]  W. H. Taylor, “The structure of analcime ( ),” Zeitschrift für Kristallographie, vol. 74, pp. 1–19, 1930.
[9]  M. Calleri and G. Ferraris, “Struttura dellíanalcime: ,” Atti della Accademia delle Scienze di Torino, vol. 98, pp. 821–846, 1964.
[10]  C. S. Cundy and P. A. Cox, “The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism,” Microporous and Mesoporous Materials, vol. 82, no. 1-2, pp. 1–78, 2005.
[11]  S. N. Azizi and S. E. Tilami, “Recrystallization of zeolite Y to analcime and zeolite P with D-methionine as structure-directing agent (SDA),” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 635, no. 15, pp. 2660–2664, 2009.
[12]  W. Chang, C. H. Lee, M. Y. Kim, and B. J. Ahn, Journal of Industrial and Engineering Chemistry, vol. 7, p. 121, 2001.
[13]  R. A. Rakoczy, M. Breuninger, M. Hunger, Y. Traa, and J. Weitkamp, “Contents,” Chemical Engineering & Technology, vol. 25, no. 1, pp. 3–8, 2002.
[14]  S. N. Azizi and M. Yousefpour, “Synthesis of aluminum-rich analcime using an ethylene diamine derivative as template,” Zeitschrift für anorganische und allgemeine Chemie, vol. 635, no. 11, pp. 1654–1658, 2009.
[15]  E. M. Flanigen, H. Khatami, and H. A. Szymanksi, “Infrared structural studies of zeolite frameworks,” in Molecular Sieve Zeolites-I, E. M. Flanigen and L. B. Sand, Eds., Adv. Chem. Ser. No. 101, p. 201, ACS, Washington, DC, USA, 1971.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133