全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches

DOI: 10.1155/2013/659014

Full-Text   Cite this paper   Add to My Lib

Abstract:

The storage of photovoltaic energy by supercapacitors is studied by using two approaches. An overview on the integration of supercapacitors in solar energy conversion systems is previously provided. First, a realized experimental setup of charge/discharge of supercapacitors fed by a photovoltaic array has been operated with fine data acquisition. The second approach consists in simulating photovoltaic energy storage by supercapacitors with a faithful and accessible model composed of solar irradiance evaluation, equivalent electrical circuit for photovoltaic conversion, and a multibranch circuit for supercapacitor. Both the experimental and calculated results are confronted, and an error of 1% on the stored energy is found with a correction largely within % of the transmission line capacitance according to temperature. 1. Introduction Abundant and available sun radiation makes attractive systems which convert solar energy into electricity like photovoltaic modules or solar thermal power plants. To overcome the intermittency of the solar energy source, batteries have to be coupled with short-time storage devices like supercapacitors which enable charge/discharge cycles inferior to 10?s with kW/kg specific power [1]. In solar energy conversion systems, supercapacitors are operated when high power demand is requested or when supplied electrical power needs adjustment [2]. As examples, they furnish significant power to overcome the initial inertia at a solar pump start and allow quality power when operating with grid-connected photovoltaic inverters. Integration in microgeneration systems enables numerous applications [1]: road signs and lighting, display of bus schedules, parking fee-machines, remote weather stations, system commands, automatic distributors, emergency lights, and compressors. Nevertheless, other uses of supercapacitors fed by solar energy have been envisaged for the last decade as reviewed below. Different algorithms have been developed to regulate the power supplied by hybrid devices for a given load or utilization grid. Kelleher and Ringwood implemented a computer programme to estimate the savings with renewable electricity microgeneration from wind and solar energy sources for domestic use in which storage could be ensured by batteries and ultracapacitors [3]. Thounthong et al. put to use the fast dynamics of supercapacitors to compensate the slow response of fuel cells in the first instant of a stepped power demand in a source consisting of photovoltaic modules, fuel cells and supercapacitors [4]. Hybrid arrangements with more elements

References

[1]  R. K?tz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochimica Acta, vol. 45, no. 15-16, pp. 2483–2498, 2000.
[2]  A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley and Sons, Chichester, UK, 2003.
[3]  J. Kelleher and J. V. Ringwood, “A computational tool for evaluating the economics of solar and wind microgeneration of electricity,” Energy, vol. 34, no. 4, pp. 401–409, 2009.
[4]  P. Thounthong, V. Chunkag, P. Sethakul, S. Sikkabut, S. Pierfederici, and B. Davat, “Energy management of fuel cell/solar cell/supercapacitor hybrid power source,” Journal of Power Sources, vol. 196, no. 1, pp. 313–324, 2011.
[5]  P. K. Ray, S. R. Mohanty, and N. Kishor, “Proportional-integral controller based small-signal analysis of hybrid distributed generation systems,” Energy Conversion and Management, vol. 52, no. 4, pp. 1943–1954, 2011.
[6]  D. Lu, H. Fakham, T. Zhou, and B. Fran?ois, “Application of Petri nets for the energy management of a photovoltaic based power station including storage units,” Renewable Energy, vol. 35, no. 6, pp. 1117–1124, 2010.
[7]  M. Uzunoglu, O. C. Onar, and M. S. Alam, “Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications,” Renewable Energy, vol. 34, no. 3, pp. 509–520, 2009.
[8]  M. B. Burnett and L. J. Borle, “A power system combining batteries and supercapacitors in a solar/hydrogen hybrid electric vehicle,” in 2005 IEEE Vehicle Power and Propulsion Conference, VPPC, pp. 709–715, USA, September 2005.
[9]  A. Djerdir, K. Elkadri, and A. Miraoui, “Alimentation par biberonnage solaire photovolta?que d’une cha?ne de motorisation électrique,” Revue des énergies Renouvelables, vol. 9, no. 2, pp. 63–74, 2006.
[10]  A. Andreotti, F. Mottola, M. Pagano, and G. Velotto, “Design of ultracapacitor based filter for isolated PV source feeding pulsing load,” Electric Power Systems Research, vol. 78, no. 6, pp. 1038–1046, 2008.
[11]  C. Bergonzini, D. Brunelli, and L. Benini, “Comparison of energy intake prediction algorithms for systems powered by photovoltaic harvesters,” Microelectronics Journal, vol. 41, no. 11, pp. 766–777, 2010.
[12]  A. Hande, T. Polk, W. Walker, and D. Bhatia, “Indoor solar energy harvesting for sensor network router nodes,” Microprocessors and Microsystems, vol. 31, no. 6, pp. 420–432, 2007.
[13]  A. Janek, C. Trummer, C. Steger, R. Weiss, J. Preishuber-Pfluegl, and M. Pistauer, “Simulation based verification of energy storage architectures for higher class tags supported by energy harvesting devices,” Microprocessors and Microsystems, vol. 32, no. 5-6, pp. 330–339, 2008.
[14]  J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley and Sons, Chichester, UK, 3rd edition, 2006.
[15]  P. H. Communay, Héliothermique, le Gisement Solaire, Méthodes et Calculs, Groupe de Recherche et d’édition, Toulouse, France, 2002.
[16]  S. K. Sen, “How modeling can attract experimentalists to improve solar cell's efficiency: divide-and-conquer approach,” Nonlinear Analysis, Theory, Methods and Applications, vol. 71, no. 1-2, pp. 196–211, 2009.
[17]  M. G. Villalva, J. R. Gazoli, and E. Ruppert Filho, “Modeling and circuit-based simulation of photovoltaic arrays,” in 2009 Brazilian Power Electronics Conference, COBEP2009, pp. 1244–1254, bra, October 2009.
[18]  W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, pp. 78–88, 2006.
[19]  T. A. Centeno and F. Stoeckli, “The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons,” Electrochimica Acta, vol. 52, no. 2, pp. 560–566, 2006.
[20]  J. Pikunic, K. E. Gubbins, R.-M. Pellenq et al., “Realistic molecular models for saccharose-based carbons,” Applied Surface Science, vol. 196, no. 1–4, pp. 98–104, 2002.
[21]  P. Bj?rnbom, “Charge/discharge of an electrochemical supercapacitor electrode pore; non-uniqueness of mathematical models,” Electrochemistry Communications, vol. 9, no. 2, pp. 211–215, 2007.
[22]  T. Kudo, Y. Ikeda, T. Watanabe et al., “Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes,” Solid State Ionics, vol. 152-153, pp. 833–841, 2002.
[23]  Maxwell Technology, Boostcap Supercapacitor Module Operating Manual, Maxwell Technology, San Diego, Calif, USA, 2003.
[24]  F. Belhachemi, S. Ra?l, and B. Davat, “A physical based model of power electric double-layer supercapacitors,” in Proceedings of the Industry Applications Conference, 2000. Conference Record of the 2000 IEEE, vol. 5 of GREENINPL-CNRS (UPRE), pp. 3069–3076, October 2000.
[25]  J. Lassègues, J. Grondin, T. Becker, L. Servant, and M. Hernandez, “Supercapacitor using a proton conducting polymer electrolyte,” Solid State Ionics C, vol. 77, pp. 311–317, 1995.
[26]  C. Portet, P. L. Taberna, P. Simon, and E. Flahaut, “Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte,” Journal of Power Sources, vol. 139, no. 1-2, pp. 371–378, 2005.
[27]  E. Taer, M. Deraman, I. A. Talib, S. A. Hashmi, and A. A. Umar, “Growth of platinum nanoparticles on stainless steel 316L current collectors to improve carbon-based supercapacitor performance,” Electrochimica Acta, vol. 56, no. 27, pp. 10217–10222, 2011.
[28]  F. Rafik, H. Gualous, R. Gallay, A. Crausaz, and A. Berthon, “Frequency, thermal and voltage supercapacitor characterization and modeling,” Journal of Power Sources, vol. 165, no. 2, pp. 928–934, 2007.
[29]  L. Zubieta and R. Bonert, “Characterization of Double-Layer Capacitors (DLCs) for power electronics applications,” in Proceedings of the 1998 IEEE Industry Applications Conference. Part 1 (of 3), pp. 1149–1154, October 1998.
[30]  F. Belhachemi, Modélisation et caractérisation des supercondensateurs à couche double électrique utilisés en électronique de puissance [Ph.D. thesis], Institut National Polytechnique de Lorraine, Lorraine, France, 2001.
[31]  M. A. Camara, Modélisation du stockage de l’énergie photovolta?que par supercondensateurs [Ph.D. thesis], Université Paris-Est, Paris, France, 2011.
[32]  P. Johansson and B. Andersson, Comparison of simulation programs for supercapacitor modelling [M.S. thesis], Chalmers University of Technology, Gothenburg, Sweden, 2008.
[33]  N. Rizoug, Modélisation électrique et énergétique des supercondensateurs et méthodes de caractérisation: application au cyclage d’un module de supercondensateurs basse tension en grande puissance [Ph.D. thesis], Université de Lille, Lille, France, 2006.
[34]  H. Gualous, D. Bouquain, A. Berthon, and J. M. Kauffmann, “Experimental study of supercapacitor serial resistance and capacitance variations with temperature,” Journal of Power Sources, vol. 123, no. 1, pp. 86–93, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133