Elastin is an extracellular matrix protein responsible for the elastic properties of organs and tissues, the elastic properties being conferred to the protein by the presence of elastic fibers. In the perspective of producing tailor-made biomaterials of potential interest in nanotechnology and biotechnology fields, we report a study on an elastin-derived polypeptide. The choice of the polypeptide sequence encoded by exon 6 of Human Tropoelastin Gene is dictated by the peculiar sequence of the polypeptide. As a matter of fact, analogously to elastin, it is constituted of a hydrophobic region (GLGAFPAVTFPGALVPGG) and of a more hydrophilic region rich of lysine and alanine residues (VADAAAAYKAAKA). The role played by the two different regions in triggering the adoption of beta-turn and beta-sheet conformations is herein discussed and demonstrated to be crucial for the self-aggregation properties of the polypeptide. 1. Introduction The natural extracellular matrix (ECM) has been, over the years, a source of inspiration for the design and the production of biomaterials of potential interest as scaffolds in tissue engineering [1, 2]. The propensity to self-aggregate, typical of the proteins contained in ECM, into nanostructured fibers and fibrils, makes it strongly attractive. Over the last years, there has been a remarkable progress in the synthesis of ECM protein-inspired polypeptides. Elastin is the ECM protein responsible for the elasticity of organs and tissues such as lungs, skin, and arteries, the elastic properties being conferred on elastin by the presence of fibers [3]. The propensity to self-aggregate was also demonstrated for some soluble elastin derivatives such as -elastin and -elastin and for some short-synthetic peptides [4]. More recently, long elastin-derived polypeptides obtained both by DNA recombinant technologies and by chemical synthesis were investigated and demonstrated to be able to self-aggregate into fibers and fibrils, analogously to the entire protein [5, 6]. In this context, a crucial role is played by the peculiar sequence of the polypeptide [7]. The outstanding mechanical properties of elastin are due to the regular alternance of hydrophobic regions, rich in glycine, alanine, valine, and leucine, and of hydrophilic domains rich in alanine and lysine residues [7]. The hydrophobic sequences give elasticity while the hydrophilic [8] ones confer to the protein resistance to rupture and fatigue. As a matter of fact, the hydrophilic domains are involved in the formation of covalent cross-links occurring between adjacent molecules
References
[1]
J. C. Rodriguez-Cabello, L. Martin, A. Girotti, C. Garca-Arévalo, F. J. Arias, and M. Alonso, “Emerging applications of multifunctional elastin-like recombinamers,” Nanomedicine, vol. 6, no. 1, pp. 111–122, 2011.
[2]
D. L. Nettles, A. Chilkoti, and L. A. Setton, “Applications of elastin-like polypeptides in tissue engineering,” Advanced Drug Delivery Reviews, vol. 62, no. 15, pp. 1479–1485, 2010.
[3]
J. E. Wagenseil and R. P. Mecham, “New insights into elastic fiber assembly,” Birth Defects Research C, vol. 81, no. 4, pp. 229–240, 2007.
[4]
A. Pepe, B. Bochicchio, and A. M. Tamburro, “Supramolecular organization of elastin and elastin-related nanostructured biopolymers,” Nanomedicine, vol. 2, no. 2, pp. 203–218, 2007.
[5]
M. Miao, C. M. Bellingham, R. J. Stahl, E. E. Sitarz, C. J. Lane, and F. W. Keeley, “Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin,” Journal of Biological Chemistry, vol. 278, no. 49, pp. 48553–48562, 2003.
[6]
A. Pepe, D. Guerra, B. Bochicchio et al., “Dissection of human tropoelastin: supramolecular organization of polypeptide sequences coded by particular exons,” Matrix Biology, vol. 24, no. 2, pp. 96–109, 2005.
[7]
B. Bochicchio and A. Pepe, “Role of polyproline II conformation in human tropoelastin structure,” Chirality, vol. 23, no. 9, pp. 694–702, 2011.
[8]
J. A. Foster, L. Rubin, and H. M. Kagan, “Isolation and characterization of cross linked peptides from elastin,” Journal of Biological Chemistry, vol. 249, no. 19, pp. 6191–6196, 1974.
[9]
A. M. Tamburro, A. Pepe, and B. Bochicchio, “Localizing α-helices in human tropoelastin: assembly of the elastin ‘puzzle’,” Biochemistry, vol. 45, no. 31, pp. 9518–9530, 2006.
[10]
D. Tintar, V. Samouillan, J. Dandurand et al., “Human tropoelastin sequence: dynamics of polypeptide coded by Exon 6 in solution,” Biopolymers, vol. 91, no. 11, pp. 943–952, 2009.
[11]
H. LeVine III, “Quantification of β-sheet amyloid fibril structures with thioflavin T,” Methods in Enzymology, vol. 309, pp. 274–284, 1999.
[12]
W. E. Klunk, R. F. Jacob, and R. P. Mason, “Quantifying amyloid by congo red spectral shift assay,” Methods in Enzymology, vol. 309, pp. 285–305, 1999.
[13]
B. Bochicchio and A. M. Tamburro, “Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions,” Chirality, vol. 14, no. 10, pp. 782–792, 2002.
[14]
A. F. Drake, G. Siligardi, and W. A. Gibbons, “Reassessment of the electronic circular dichroism criteria for random coil conformations of poly(l-lysine) and the implications for protein folding and denaturation studies,” Biophysical Chemistry, vol. 31, no. 1-2, pp. 143–146, 1988.
[15]
R. W. Woody, “Circular dichroism and conformation of unordered peptides,” in Advances in Biophysical Chemistry, L. A. Bush, Ed., vol. 2, pp. 37–79, JAI Press, Greenwich, Conn, USA, 1992.
[16]
A. Perczel, M. Hollosi, P. Sandor, and G. D. Fasman, “The evaluation of type I and type II β-turn mixtures. Circular dichroism, NMR and molecular dynamics studies,” International Journal of Peptide and Protein Research, vol. 41, no. 3, pp. 223–236, 1993.
[17]
S. Cai and B. R. Singh, “A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods,” Biochemistry, vol. 43, no. 9, pp. 2541–2549, 2004.
[18]
M. Martino, A. Bavoso, V. Guantieri, A. Coviello, and A. M. Tamburro, “On the occurrence of polyproline II structure in elastin,” Journal of Molecular Structure, vol. 519, no. 1–3, pp. 173–189, 2000.
[19]
M. Hollosi, Z. Majer, A. Z. Ronai et al., “CD and Fourier transform ir spectroscopic studies of peptides. II. Detection of β-turns in linear peptides,” Biopolymers, vol. 34, no. 2, pp. 177–185, 1994.
[20]
J. Bandekar, “Amide modes and protein conformation,” Biochimica et Biophysica Acta, vol. 1120, no. 2, pp. 123–143, 1992.
[21]
P. I. Haris and D. Chapman, “The conformational analysis of peptides using Fourier transform IR spectroscopy,” Biopolymers, vol. 37, no. 4, pp. 251–263, 1995.
[22]
W. E. Klunk, R. F. Jacob, and R. P. Mason, “Quantifying amyloid by congo red spectral shift assay,” Methods in Enzymology, vol. 309, pp. 285–305, 1999.
[23]
A. A. Maskevich, V. I. Stsiapura, V. A. Kuzmitsky et al., “Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form,” Journal of Proteome Research, vol. 6, no. 4, pp. 1392–1401, 2007.
[24]
H. LeVine III, “Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer β(140) amyloid fibrils,” Archives of Biochemistry and Biophysics, vol. 342, no. 2, pp. 306–316, 1997.
[25]
H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, “Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T,” Analytical Biochemistry, vol. 177, no. 2, pp. 244–249, 1989.
[26]
A. Pepe, R. Flamia, D. Guerra et al., “Exon 26-coded polypeptide: an isolated hydrophobic domain of human tropoelastin able to self-assemble in vitro,” Matrix Biology, vol. 27, no. 5, pp. 441–450, 2008.
[27]
A. M. Tamburro, A. Pepe, B. Bochicchio, D. Quaglino, and I. P. Ronchetti, “Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin,” Journal of Biological Chemistry, vol. 280, no. 4, pp. 2682–2690, 2005.
[28]
D. H. Le, R. Hanamura, D.-H. Pham, et al., “Self-assembly of elastin-mimetic double hydrophobic polypeptides,” Biomacromolecules, vol. 14, no. 4, pp. 1028–1034, 2013.
[29]
S. E. Grieshaber, T. Nie, C. Yan et al., “Assembly properties of an alanine-rich, lysine-containing peptide and the formation of peptide/polymer hybrid hydrogels,” Macromolecular Chemistry and Physics, vol. 212, no. 3, pp. 229–239, 2011.
[30]
A. M. Tamburro, M. Lorusso, N. Ibris, A. Pepe, and B. Bochicchio, “Investigating by circular dichroism some amyloidogenic elastin-derived polypeptides,” Chirality, vol. 22, no. 1, pp. E56–E66, 2010.