Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles
Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP), sulfur-amine analogue of tyrosine, was conjugated with magnetite nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). During these therapeutic processes, NPrCAP was also expected to provide melanoma-targeted drug delivery system. 1. Introduction The incidence of melanoma is increasing worldwide at an alarming rate [1, 2]. As yet, management of metastatic melanoma is an extremely difficult challenge. Less than 10% with metastatic melanoma patients survive currently for five years because of the lack of effective therapies [3]. There is, therefore, an emerging need to develop innovative therapies for the control of metastatic melanoma. The major advance of drug discovery for targeted therapy to cancer cells can be achieved by exploiting their unique biological property. The biological property unique to the melanoma cell resides in the biosynthesis of melanin pigments, that is, melanogenesis occuring within specific compartments, melanosomes. Melanogenesis begins with the conversion of amino acid, tyrosine to dopa and subsequently to dopaquinone in the presence of tyrosinase. This pathway is uniquely expressed by all melanoma cells. It is well known that the clinically “amelanotic” melanoma tissues always have tyrosinase activity to some extent, and that “in vitro amelanotic” melanoma cells become “melanotic” ones when they are regrown in the in vivo condition. Melanin precursors are inherently cytotoxic through reacting with tyrosinase to form unstable quinone derivatives [4]. Thus, tyrosine analogues that are tyrosinase substrates can be good candidates for developing drugs to melanoma-targeting therapies [5]. N-propionyl and N-acetyl derivatives (NPr- and NAcCAP) of 4-S-cysteaminylphenol, that is, sulfur-amine analogue of tyrosine, were synthesized as possible
References
[1]
E. de Vries, L. V. van de Poll-Franse, W. J. Louwman, F. R. de Gruijl, and J. W. W. Coebergh, “Predictions of skin cancer incidence in the Netherlands up to 2015,” The British Journal of Dermatology, vol. 152, no. 3, pp. 481–488, 2005.
[2]
C. M. Balch, J. E. Gershenwald, S. J. Soong et al., “Final version of 2009 AJCC melanoma staging and classification,” Journal of Clinical Oncology, vol. 27, no. 36, pp. 6199–6206, 2009.
[3]
C. M. Balch, A. C. Buzaid, S. J. Soong et al., “Final version of the American joint committee on cancer staging system for cutaneous melanoma,” Journal of Clinical Oncology, vol. 19, no. 16, pp. 3635–3648, 2001.
[4]
K. Reszka and K. Jimbow, “Electron donor and acceptor properties of melanin pigments in the skin,” in Oxidative Stress in Dermatology, J. Fuchs and L. Packer, Eds., pp. 287–320, Marcel Dekker, New York, NY, USA, 1993.
[5]
K. Jimbow, T. Iwashina, F. Alena, K. Yamada, J. Pankovich, and T. Umemura, “Exploitation of pigment biosynthesis pathway as a selective chemotherapeutic approach for malignant melanoma,” Journal of Investigative Dermatology, vol. 100, no. 2, pp. s231–s238, 1993.
[6]
F. Alena, T. Iwashina, A. Gili, and K. Jimbow, “Selective in vivo accumulation of N-acetyl-4-S-cysteaminylphenol in B16F10 murine melanoma and enhancement of its in vitro and in vivo antimelanoma effect by combination of buthionine sulfoximine,” Cancer Research, vol. 54, no. 10, pp. 2661–2666, 1994.
[7]
J. M. Pankovich and K. Jimbow, “Tyrosine transport in a human melanoma cell line as a basis for selective transport of cytotoxic analogues,” Biochemical Journal, vol. 280, no. 3, pp. 721–725, 1991.
[8]
M. Tandon, P. D. Thomas, M. Shokravi et al., “Synthesis and antitumour effect of the melanogenesis-based antimelanoma agent N-Propionyl-4-S-cysteaminylphenol,” Biochemical Pharmacology, vol. 55, no. 12, pp. 2023–2029, 1998.
[9]
A. Gili, P. D. Thomas, M. Ota, and K. Jimbow, “Comparison of in vitro cytotoxicity of N-acetyl and N-propionyl derivatives of phenolic thioether amines in melanoma and neuroblastoma cells and the relationship to tyrosinase and tyrosine hydroxylase enzyme activity,” Melanoma Research, vol. 10, no. 1, pp. 9–15, 2000.
[10]
P. D. Thomas, H. Kishi, H. Cao et al., “Selective incorporation and specific cytocidal effect as the cellular basis for the antimelanoma action of sulphur containing tyrosine analogs,” Journal of Investigative Dermatology, vol. 113, no. 6, pp. 928–934, 1999.
[11]
A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” Journal of Bioscience and Bioengineering, vol. 100, no. 1, pp. 1–11, 2005.
[12]
N. Kawai, A. Ito, Y. Nakahara et al., “Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats,” Prostate, vol. 64, no. 4, pp. 373–381, 2005.
[13]
M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida, and T. Kobayashi, “Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study,” Japanese Journal of Cancer Research, vol. 87, no. 11, pp. 1179–1183, 1996.
[14]
A. Ménoret and R. Chandawarkar, “Heat-shock protein-based anticancer immunotherapy: an idea whose time has come,” Seminars in Oncology, vol. 25, no. 6, pp. 654–660, 1998.
[15]
P. K. Srivastava, A. Ménoret, S. Basu, R. Binder, and K. Quade, “Heat shock proteins come of age: primitive functions acquired new roles in an adaptive world,” Immunity, vol. 8, no. 6, pp. 657–665, 1998.
[16]
Y. Tamura, N. Tsuboi, N. Sato, and K. Kikuchi, “70?kDa heat shock cognate protein is a transformation-associated antigen and a possible target for the host's anti-tumor immunity,” Journal of Immunology, vol. 151, no. 10, pp. 5516–5524, 1993.
[17]
Y. Tamura, P. Peng, K. Liu, M. Daou, and P. K. Srivastava, “Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations,” Science, vol. 278, no. 5335, pp. 117–120, 1997.
[18]
Y. Tamura and N. Sato, “Heat shock proteins: chaperoning of innate and adaptive immunities,” Japanese Journal of Hyperthermic Oncology, vol. 19, pp. 131–139, 2003.
[19]
P. K. Srivastava, “Immunotherapy for human cancer using heat shock protein-peptide complexes,” Current Oncology Reports, vol. 7, no. 2, pp. 104–108, 2005.
[20]
Y. Tamura, S. Takashima, J. M. Cho et al., “Inhibition of natural killer cell cytotoxicity by cell growth-related molecules,” Japanese Journal of Cancer Research, vol. 87, no. 6, pp. 623–630, 1996.
[21]
G. Ueda, Y. Tamura, I. Hirai et al., “Tumor-derived heat shock protein 70-pulsed dendritic cells elicit-tumor-specific cytotoxic T lymphocytes (CTLs) and tumor immunity,” Cancer Science, vol. 95, no. 3, pp. 248–253, 2004.
[22]
A. Ito, H. Honda, and T. Kobayashi, “Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression,” Cancer Immunology, Immunotherapy, vol. 55, no. 3, pp. 320–328, 2006.
[23]
H. Shi, T. Cao, J. E. Connolly et al., “Hyperthermia enhances CTL cross-priming,” Journal of Immunology, vol. 176, no. 4, pp. 2134–2141, 2006.
[24]
J. Dakour, T. Vinayagamoorthy, K. Jimbow et al., “Identification of a cDNA coding for a Ca2+-binding phosphoprotein (p90) calnexin, on melanosomes in normal and malignant human melanocytes,” Experimental Cell Research, vol. 209, no. 2, pp. 288–300, 1993.
[25]
K. Toyofuku, I. Wada, K. Hirosaki, J. S. Park, Y. Hori, and K. Jimbow, “Promotion of tyrosinase folding in Cos 7 cells by calnexin,” Journal of Biochemistry, vol. 125, no. 1, pp. 82–89, 1999.
[26]
K. Jimbow, P. F. Gomez, K. Toyofuku et al., “Biological role of tyrosinase related protein and its biosynthesis and transport from TGN to stage I melanosome, late endosome, through gene transfection study,” Pigment Cell Research, vol. 10, no. 4, pp. 206–213, 1997.
[27]
K. Jimbow, J. S. Park, F. Kato et al., “Assembly, target-signaling and intracellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis,” Pigment Cell Research, vol. 13, no. 4, pp. 222–229, 2000.
[28]
K. Jimbow, C. Hua, P. F. Gomez et al., “Intracellular vesicular trafficking of tyrosinase gene family protein in Eu- and pheomelanosome biogenesis,” Pigment Cell Research, vol. 13, no. 8, pp. 110–117, 2000.
[29]
T. Miura, K. Jimbow, and S. Ito, “The in vivo antimelanoma effect of 4-S-cysteaminylphenol and its N-acetyl derivative,” International Journal of Cancer, vol. 46, no. 5, pp. 931–934, 1990.
[30]
S. Ito, T. Kato, K. Ishikawa, T. Kasuga, and K. Jimbow, “Mechanism of selective toxicity of 4-S-cysteinylphenol and 4-S-cysteaminylphenol to melanocytes,” Biochemical Pharmacology, vol. 36, no. 12, pp. 2007–2011, 1987.
[31]
Y. Minamitsuji, K. Toyofuku, S. Sugiyama, K. Yamada, and K. Jimbow, “Sulfur containing tyrosine analogs can cause selective melanocytotoxicity involving tyrosinase-mediated apoptosis,” Journal of Investigative Dermatology Symposium Proceedings, vol. 4, no. 2, pp. 130–136, 1999.
[32]
K. Jimbow, Y. Miyake, K. Homma et al., “Characterization of melanogenesis and morphogenesis of melanosomes by physicochemical properties of melanin and melanosomes in malignant melanoma,” Cancer Research, vol. 44, no. 3, pp. 1128–1134, 1984.
[33]
B. Thiesen and A. Jordan, “Clinical applications of magnetic nanoparticles for hyperthermia,” International Journal of Hyperthermia, vol. 24, no. 6, pp. 467–474, 2008.
[34]
M. Johannsen, U. Gneveckow, L. Eckelt et al., “Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique,” International Journal of Hyperthermia, vol. 21, no. 7, pp. 637–647, 2005.
[35]
A. Ito, M. Fujioka, T. Yoshida et al., “4-S-Cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma,” Cancer Science, vol. 98, no. 3, pp. 424–430, 2007.
[36]
M. Sato, T. Yamashita, M. Ohkura et al., “N-propionyl-cysteaminylphenol-magnetite conjugate (NPrCAP/M) Is a nanoparticle for the targeted growth suppression of melanoma cells,” Journal of Investigative Dermatology, vol. 129, no. 9, pp. 2233–2241, 2009.
[37]
T. Takada, T. Yamashita, M. Sato et al., “Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 457936, 13 pages, 2009.
[38]
M. Suzuki, M. Shinkai, H. Honda, and T. Kobayashi, “Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes,” Melanoma Research, vol. 13, no. 2, pp. 129–135, 2003.
[39]
M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, and T. Kobayashi, “Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study,” Japanese Journal of Cancer Research, vol. 89, no. 4, pp. 463–469, 1998.
[40]
R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, “Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy,” Journal of Physics Condensed Matter, vol. 18, no. 38, pp. S2919–S2934, 2006.
[41]
A. Ito, M. Shinkai, H. Honda et al., “Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles,” Cancer Immunology, Immunotherapy, vol. 52, no. 2, pp. 80–88, 2003.
[42]
A. Ito, F. Matsuoka, H. Honda, and T. Kobayashi, “Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma,” Cancer Immunology, Immunotherapy, vol. 53, no. 1, pp. 26–32, 2004.
[43]
A. Sato, Y. Tamura, N. Sato et al., “Melanoma-targeted chemo-thermo-immuno (CTI)-therapy using N-propionyl-4-S-cysteaminylphenol-magnetite nanoparticles elicits CTL response via heat shock protein-peptide complex release,” Cancer Science, vol. 101, no. 9, pp. 1939–1946, 2010.
[44]
P. Manini, A. Napolitano, W. Westerhof, P. A. Riley, and M. D'Ischia, “A reactive ortho-quinone generated by tyrosinase-catalyzed oxidation of the skin depigmenting agent monobenzone: self-coupling and thiol-conjugation reactions and possible implications for melanocyte toxicity,” Chemical Research in Toxicology, vol. 22, no. 8, pp. 1398–1405, 2009.
[45]
A. Ito, M. Yamaguchi, N. Okamoto et al., “T-cell receptor repertoires of tumor-infiltrating lymphocytes after hyperthermia using functionalized magnetite nanoparticles,” Nanomedicine, 2012.
[46]
Y. Ishii-Osai, T. Yamashita, Y. Tamura et al., “N-Propionyl-4-S-cysteaminylphenol induces apoptosis in B16F1 cells and mediates tumor-specific T-cell immune responses in a mouse melanoma model,” Journal of Dermatological Science, vol. 67, no. 1, pp. 51–60, 2012.
[47]
S. Ito, A. Nishigaki, Y. Ishii-Osai et al., “Mechanism of putative neo-antigen formation from N-propionyl-4-S-cysteaminylphenol, a tyrosinase substrate, in melanoma models,” Biochemical Pharmacology, vol. 84, no. 5, pp. 646–653, 2012.
[48]
K. Jimbow, H. Obata, M. A. Pathak, and T. B. Fitzpatrick, “Mechanism of depigmentation by hydroquinone,” Journal of Investigative Dermatology, vol. 62, no. 4, pp. 436–449, 1974.
[49]
J. J. Nordlund, B. Forget, J. Kirkwood, and A. B. Lerner, “Dermatitis produced by applications of monobenzone in patients with active vitiligo,” Archives of Dermatology, vol. 121, no. 9, pp. 1141–1144, 1985.
[50]
R. E. Boissy and P. Manga, “On the etiology of contact/occupational vitiligo,” Pigment Cell Research, vol. 17, no. 3, pp. 208–214, 2004.
[51]
C. J. Cooksey, K. Jimbow, E. J. Land, and P. A. Riley, “Reactivity of orthoquinones involved in tyrosinase-dependent cytotoxicity: differences between alkylthio- and alkoxy-substituents,” Melanoma Research, vol. 2, no. 5-6, pp. 283–293, 1993.
[52]
P. G. Parsons, D. Favier, M. McEwan, H. Takahashi, K. Jimbow, and S. Ito, “Action of cysteaminylphenols on human melanoma cells in vivo and in vitro: 4-S-cysteaminylphenol binds protein disulphide isomerase,” Melanoma research, vol. 1, no. 2, pp. 97–104, 1991.
[53]
V. Hariharan, J. Klarquist, M. J. Reust et al., “Monobenzyl ether of hydroquinone and 4-tertiary butyl phenol activate markedly different physiological responses in melanocytes: relevance to skin depigmentation,” Journal of Investigative Dermatology, vol. 130, no. 1, pp. 211–220, 2010.
[54]
J. G. van den Boorn, D. I. Picavet, P. F. van Swieten et al., “Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy,” Journal of Investigative Dermatology, vol. 131, no. 6, pp. 1240–1251, 2011.
[55]
J. G. van den Boorn, D. Konijnenberg, E. P. Tjin et al., “Effective melanoma immunotherapy in mice by the skin-depigmenting agent monobenzone and the adjuvants imiquimod and CpG,” PloS ONE, vol. 5, no. 5, Article ID e10626, 2010.
[56]
P. Quaglino, F. Marenco, S. Osella-Abate et al., “Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study,” Annals of Oncology, vol. 21, no. 2, pp. 409–414, 2010.
[57]
W. Westerhof, P. Manini, A. Napolitano, and M. d'Ischia, “The haptenation theory of vitiligo and melanoma rejection: a close-up,” Experimental Dermatology, vol. 20, no. 2, pp. 92–96, 2011.
[58]
J. G. van den Boorn, C. J. Melief, and R. M. Luiten, “Monobenzone-induced depigmentation: from enzymatic blockage to autoimmunity,” Pigment Cell and Melanoma Research, vol. 24, no. 4, pp. 673–679, 2011.
[59]
W. Westerhof and M. D'Ischia, “Vitiligo puzzle: the pieces fall in place,” Pigment Cell Research, vol. 20, no. 5, pp. 345–359, 2007.
[60]
T. Kato, S. Ito, and K. Fujita, “Tyrosinase-catalyzed binding of 3,4-dihydroxyphenylalanine with proteins through the sulfhydryl group,” Biochimica et Biophysica Acta, vol. 881, no. 3, pp. 415–421, 1986.
[61]
S. Ito, T. Kato, and K. Fujita, “Covalent binding of catechols to proteins through the sulphydryl group,” Biochemical Pharmacology, vol. 37, no. 9, pp. 1707–1710, 1988.
[62]
F. Alena, K. Jimbow, and S. Ito, “Melanocytotoxicity and antimelanoma effects of phenolic amine compounds in mice in vivo,” Cancer Research, vol. 50, no. 12, pp. 3743–3747, 1990.
[63]
K. Hasegawa, S. Ito, S. Inoue, K. Wakamatsu, H. Ozeki, and I. Ishiguro, “Dihydro-1,4-benzothiazine-6,7-dione, the ultimate toxic metabolite of 4-S-cysteaminylphenol and 4-S-cysteaminylcatechol,” Biochemical Pharmacology, vol. 53, no. 10, pp. 1435–1444, 1997.
[64]
F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010.
[65]
D. J. Schwartzentruber, D. H. Lawson, J. M. Richards et al., “gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma,” The New England Journal of Medicine, vol. 364, no. 22, pp. 2119–2127, 2011.
[66]
C. Robert, L. Thomas, I. Bondarenko et al., “Ipilimumab plus dacarbazine for previously untreated metastatic melanoma,” The New England Journal of Medicine, vol. 364, pp. 2517–2526, 2011.
[67]
P. B. Chapman, A. Hauschild, C. Robert et al., “Improved survival with vemurafenib in melanoma with BRAF V600E mutation,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2507–2516, 2011.
[68]
K. Mise, N. Kan, T. Okino et al., “Effect of heat treatment on tumor cells and antitumor effector cells,” Cancer Research, vol. 50, no. 19, pp. 6199–6202, 1990.
[69]
A. Ito, F. Matsuoka, H. Honda, and T. Kobayashi, “Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles,” Cancer Gene Therapy, vol. 10, no. 12, pp. 918–925, 2003.