全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Fc Gamma Receptor-Mediated Upregulation of the Production of Interleukin 10 by Intravenous Immunoglobulin in Bone-Marrow-Derived Mouse Dendritic Cells Stimulated with Lipopolysaccharide In Vitro

DOI: 10.1155/2013/239320

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intravenous immunoglobulin (IVIG), a highly purified immunoglobulin fraction prepared from pooled plasma of several thousand donors, increased anti-inflammatory cytokine IL-10 production, while decreased proinflammatory cytokine IL-12p70 production in bone-marrow-derived mouse dendritic cells (BMDCs) stimulated with lipopolysaccharide (LPS). The changes of cytokine production were confirmed with the transcription levels of these cytokines. To study the mechanisms of this bidirectional effect, we investigated changes of intracellular molecules in the LPS-induced signaling pathway and observed that IVIG upregulated ERK1/2 phosphorylation while downregulated p38 MAPK phosphorylation. Using chemical inhibitors specific to protein kinases involved in activation of Fc gamma receptors (Fc Rs), which mediate IgG signals, we found that hyperphosphorylation of ERK1/2 and Syk phosphorylation occurred after stimulation of BMDC with LPS and IVIG, and the increasing effect on IL-10 production was abolished by these inhibitors. Furthermore, an antibody specific to Fc RI, one of Fc Rs involved in immune activation, inhibited IVIG-induced increases in IL-10 production, but not IL-12p70 decreases, whereas the anti-IL-10 antibody restored the decrease in IL-12p70 induced by IVIG. These findings suggest that IVIG induced the upregulation of IL-10 production through Fc RI activation, and IL-10 was indispensable to the suppressing effect of IVIG on the production of IL-12p70 in LPS-stimulated BMDC. 1. Introduction Dendritic cells (DCs) are potent and specialized antigen presenting cells and important regulators of innate and adaptive immunity with the ability to induce T cell activation or its suppression. After the migration from peripheral tissues to the lymphoid organs, DCs trigger immune responses by secreting proinflammatory and anti-inflammatory cytokines to regulate T cell polarization [1, 2]. Bone-marrow-derived mouse dendritic cells (BMDCs) produce proinflammatory cytokine IL-12p70 and anti-inflammatory cytokine IL-10 when stimulated with LPS [3]. Development and proliferation of type 1 effector helper T cells (Th1) is known to be under the influence of IL-12p70. IL-12p70 activates NK and T cells and its production is inhibited by IL-10 [4, 5]. DC maturation is impaired by IL-10, and Th1-mediated immune responses are attenuated by immature DC [6, 7]. It is thought to be an important role of DC to control the balance between the development of effector and regulatory helper T cells in determination of the direction toward efficient immunosuppression and immune

References

[1]  J. W. Young and R. M. Steinman, “The hematopoietic development of dendritic cellsa distinct pathway for myeloid differentiation,” Stem Cells, vol. 14, no. 4, pp. 376–387, 1996.
[2]  J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998.
[3]  H.-R. Jiang, E. Muckersie, M. Robertson, H. Xu, J. Liversidge, and J. V. Forrester, “Secretion of interleukin-10 or interleukin-12 by LPS-activated dendritic cells is critically dependent on time of stimulus relative to initiation of purified DC culture,” Journal of Leukocyte Biology, vol. 72, no. 5, pp. 978–985, 2002.
[4]  G. Trinchieri, “Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity,” Annual Review of Immunology, vol. 13, pp. 251–276, 1995.
[5]  C.-Q. Xia and K. J. Kao, “Suppression of interleukin-12 production through endogenously secreted interleukin-10 in activated dendritic cells: involvement of activation of extracellular signal-regulated protein kinase,” Scandinavian Journal of Immunology, vol. 58, no. 1, pp. 23–32, 2003.
[6]  R. de Waal Malefyt, J. Haanen, H. Spits et al., “Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression,” Journal of Experimental Medicine, vol. 174, no. 4, pp. 915–924, 1991.
[7]  K. Steinbrink, M. W?lfl, H. Jonuleit, J. Knop, and A. H. Enk, “Induction of tolerance by IL-10-treated dendritic cells,” Journal of Immunology, vol. 159, no. 10, pp. 4772–4780, 1997.
[8]  M. D. Kazatchkine and S. V. Kaveri, “Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin,” The New England Journal of Medicine, vol. 345, no. 10, pp. 747–755, 2001.
[9]  V. S. Negi, S. Elluru, S. Sibéril, et al., “Intravenous immunoglobulin: an update on the clinical use and mechanisms of action,” Journal of Clinical Immunology, vol. 27, no. 3, pp. 233–245, 2007.
[10]  M. Ballow and C. Allen, “Intravenous immunoglobulin modulates the maturation of TLR 4-primed peripheral blood monocytes,” Clinical Immunology, vol. 139, no. 2, pp. 208–214, 2011.
[11]  J. Kwekkeboom, “Modulation of dendritic cells and regulatory T cells by naturally occurring antibodies,” Advances in Experimental Medicine and Biology, vol. 750, chapter 10, pp. 133–144, 2012.
[12]  J. Bayry, S. Lacroix-Desmazes, C. Carbonneil et al., “Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin,” Blood, vol. 101, no. 2, pp. 758–765, 2003.
[13]  M. Guha and N. Mackman, “LPS induction of gene expression in human monocytes,” Cellular Signalling, vol. 13, no. 2, pp. 85–94, 2001.
[14]  B. M. Neves, M. T. Cruz, V. Francisco et al., “Differential roles of PI3-Kinase, MAPKs and NF-κB on the manipulation of dendritic cell Th1/Th2 cytokine/chemokine polarizing profile,” Molecular Immunology, vol. 46, no. 13, pp. 2481–2492, 2009.
[15]  J.-F. Arrighi, M. Rebsamen, F. Rousset, V. Kindler, and C. Hauser, “A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers,” Journal of Immunology, vol. 166, no. 6, pp. 3837–3845, 2001.
[16]  S. von Gunten, D. F. Smith, R. D. Cummings et al., “Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass,” Journal of Allergy and Clinical Immunology, vol. 123, no. 6, pp. 1268–1276, 2009.
[17]  A. Yada, S. Ebihara, K. Matsumura, et al., “Accelerated antigen presentation and elicitation of humoral response in vivo by FcγRIIB- and FcγRI/RIII-mediated immune complex uptake,” Cellular Immunology, vol. 225, no. 1, pp. 21–32, 2003.
[18]  J. V. Ravetch and S. Bolland, “IgG Fc receptors,” Annual Review of Immunology, vol. 19, pp. 275–290, 2001.
[19]  C. Sedlik, D. Orbach, P. Veron et al., “A critical role for Syk protein tyrosine kinase in Fc receptor-mediated antigen presentation and induction of dendritic cell maturation,” Journal of Immunology, vol. 170, no. 2, pp. 846–852, 2003.
[20]  J. M. Oliver, D. L. Burg, B. S. Wilson, J. L. McLaughlin, and R. L. Geahlen, “Inhibition of mast cell FcεR1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol,” Journal of Biological Chemistry, vol. 269, no. 47, pp. 29697–29703, 1994.
[21]  J. H. Hanke, J. P. Gardner, R. L. Dow et al., “Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor,” Journal of Biological Chemistry, vol. 271, no. 2, pp. 695–701, 1996.
[22]  A. Sobota, A. Strzelecka-Kiliszek, E. Gladkowska, K. Yoshida, K. Mrozińska, and K. Kwiatkowska, “Binding of IgG-opsonized particles to FcγR is an active stage of phagocytosis that involves receptor clustering and phosphorylation,” Journal of Immunology, vol. 175, no. 7, pp. 4450–4457, 2005.
[23]  M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie et al., “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” Journal of Immunological Methods, vol. 223, no. 1, pp. 77–92, 1999.
[24]  K. Murakami, C. Suzuki, F. Kobayashi, et al., “Intravenous immunoglobulin preparation attenuates LPS-induced production of pro-inflammatory cytokines in human monocytic cells by modulating TLR4-mediated signaling pathways,” Naunyn-Schmiedeberg’s Archives of Pharmacology, vol. 385, no. 9, pp. 891–898, 2012.
[25]  T. D. Schmittgen and K. J. Livak, “Analyzing real-time PCR data by the comparative CT method,” Nature Protocols, vol. 3, no. 6, pp. 1101–1108, 2008.
[26]  S. M. M?kel?, M. Strengell, T. E. Pietil?, P. ?sterlund, and I. Julkunen, “Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells,” Journal of Leukocyte Biology, vol. 85, no. 4, pp. 664–672, 2009.
[27]  T. Nakahara, H. Uchi, K. Urabe, Q. Chen, M. Furue, and Y. Moroi, “Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells,” International Immunology, vol. 16, no. 12, pp. 1701–1709, 2004.
[28]  A.-K. Yi, J.-G. Yoon, S.-J. Yeo, S.-C. Hong, B. K. English, and A. M. Krieg, “Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th1 response,” Journal of Immunology, vol. 168, no. 9, pp. 4711–4720, 2002.
[29]  C. Qian, X. Jiang, H. An et al., “TLR agonists promote ERK-mediated preferential IL-10 production of regulatory dendritic cells (diffDCs), leading to NK-cell activation,” Blood, vol. 108, no. 7, pp. 2307–2315, 2006.
[30]  Y. Yanagawa and K. Onoé, “Enhanced IL-10 production by TLR4- and TLR2-primed dendritic cells upon TLR restimulation,” Journal of Immunology, vol. 178, no. 10, pp. 6173–6180, 2007.
[31]  O. Letourneur, I. C. S. Kennedy, A. T. Brini, J. R. Ortaldo, J. J. O'Shea, and J.-P. Kinet, “Characterization of the family of dimers associated with Fc receptors (FcεRI and FcγRIII),” Journal of Immunology, vol. 147, no. 8, pp. 2652–2656, 1991.
[32]  P. R. Scholl and R. S. Geha, “Physical association between the high-affinity IgG receptor (FcγRI) and the γ subunit of the high-affinity IgE receptor (FcεRIγ),” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 8847–8850, 1993.
[33]  A. V. T. Wang, P. R. Scholl, and R. S. Geha, “Physical and functional association of the high affinity immunoglobulin G receptor (FcγRI) with the kinases Hck and Lyn,” Journal of Experimental Medicine, vol. 180, no. 3, pp. 1165–1170, 1994.
[34]  D. L. Durden and Y. B. L. Yen bou Liu, “Protein-tyrosine kinase p72(syk) in FcγRI receptor signaling,” Blood, vol. 84, no. 7, pp. 2102–2108, 1994.
[35]  H. F. MacMillan, T. Lee, and A. C. Issekutz, “Intravenous immunoglobulin G-mediated inhibition of T-cell proliferation reflects an endogenous mechanism by which IgG modulates T-cell activation,” Clinical Immunology, vol. 132, no. 2, pp. 222–233, 2009.
[36]  M. S. Maddur, M. Sharma, P. Hegde, S. Lacroix-Desmazes, S. V. Kaveri, and J. Bayry, “Inhibitory effects of IVIG on IL-17 production by Th17 cells is independent of anti-IL-17 antibodies in the immunoglobulin preparations,” Journal of Clinical Immunology, vol. 33, supplement 1, pp. S62–S66, 2013.
[37]  J.-F. Séité, T. Guerrier, D. Cornec, C. Jamin, P. Youinou, and S. Hillion, “TLR9 responses of B cells are repressed by intravenous immunoglobulin through the recruitment of phosphatase,” Journal of Autoimmunity, vol. 37, no. 3, pp. 190–197, 2011.
[38]  L. K. Ernst, A.-M. Duchemin, and C. L. Anderson, “Association of the high-affinity receptor for IgG (FcγRI) with the γ subunit of the IgE receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6023–6027, 1993.
[39]  R. O. de Castro, “Regulation and function of Syk tyrosine kinase in mast cell signaling and beyond,” Journal of Signal Transduction, vol. 2011, Article ID 507291, 9 pages, 2011.
[40]  C. Darby, R. L. Geahlen, and A. D. Schreiber, “Stimulation of macrophage FcγRIIIA activates the receptor-associated protein tyrosine kinase Syk and induces phosphorylation of multiple proteins including p95Vav and p62/GAP-associated protein,” Journal of Immunology, vol. 152, no. 11, pp. 5429–5437, 1994.
[41]  Z. K. Indik, J.-G. Park, S. Hunter, and A. D. Schreiber, “The molecular dissection of Fcγ receptor mediated phagocytosis,” Blood, vol. 86, no. 12, pp. 4389–4399, 1995.
[42]  A. Strzelecka, K. Kwiatkowska, and A. Sobota, “Tyrosine phosphorylation and Fcγ receptor-mediated phagocytosis,” FEBS Letters, vol. 400, no. 1, pp. 11–14, 1997.
[43]  D. Cox and S. Greenberg, “Phagocytic signaling strategies: Fcγ receptor-mediated phagocytosis as a model system,” Seminars in Immunology, vol. 13, no. 6, pp. 339–345, 2001.
[44]  R. J. Lories, M. Casteels-Van Daele, J. L. Ceuppens, and S. W. Van Gool, “Polyclonal immunoglobulins for intravenous use induce interleukin 10 release in vivo and in vitro,” Annals of the Rheumatic Diseases, vol. 63, no. 6, pp. 747–748, 2004.
[45]  R. P. Donnelly, H. Dickensheets, and D. S. Finbloom, “The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes,” Journal of Interferon and Cytokine Research, vol. 19, no. 6, pp. 563–573, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133