The micro-pulling-down technique for crystalline fiber growth is employed to grow fibers and thin rods of bismuth germanate, Bi4Ge3O12 (BGO), for use in electrooptic high voltage sensors. The motivation is the growth of fibers that are considerably longer than the typical lengths (100–250?mm) that are achieved by more conventional growth techniques like the Czochralski technique. At a given voltage (several hundred kilovolts in high voltage substation applications) longer sensors result in lower electric field strengths and therefore more compact and simpler electric insulation. BGO samples with lengths up to 850?mm and thicknesses from 300?μm to 3?mm were grown. Particular challenges in the growth of BGO fibers are addressed. The relevant optical properties of the fibers are characterized, and the electrooptic response is investigated at voltages up to . 1. Introduction Voltage and current measurements are two key functions in the control and protection of electric power grids. Traditionally voltage is measured by means of inductive instrument transformers or capacitive voltage dividers. Such transformers have been state of the art for many decades but have also a number of drawbacks. In particular they represent heavy and space consuming equipment (with weights of up to several tons at the highest voltage levels). In recent years optical sensors for high voltage and current have found considerable attention as attractive alternatives. Advantages of optical voltage sensors over conventional voltage transformers include higher fidelity (e.g., due their larger bandwidth and absence of effects like ferroresonances), smaller weight and size, inherent galvanic isolation of secondary electronics from high voltage, and reduced environmental impact (e.g., no risk of oil spills). Furthermore, their output is readily compatible with the modern digital equipment for substation control and protection. Commonly optical voltage sensors make use of the electrooptic effect (Pockels effect) in materials such as bismuth germanium oxide, Bi4Ge3O12 (BGO), or bismuth silicon oxide, Bi4Si3O12 (BSO) [1–5]. Several sensor configurations have been reported. In gas-insulated high voltage switchgear a small electrooptic crystal may be integrated into a capacitive voltage divider where it measures a small fraction of the line voltage [2–4]. In an optical voltage transducer for air-insulated substations reported in [5] the voltage is derived from several local electric field measurements at different positions along a path from ground to high voltage. The crystals are placed
References
[1]
K. Shibata, “A fiber optic electric field sensor using the electro-optic effect of Bi4Ge3O12,” in Proceedings of the 1st International Conference on Optical Fibre Sensors, vol. 221, pp. 164–168, London, UK, April 1983.
[2]
T. Mitsui, K. Hosoe, H. Usami, and S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic field sensors,” IEEE Transactions on Power Delivery, vol. 2, no. 1, pp. 87–93, 1987.
[3]
T. Sawa, K. Kurosawa, T. Kaminishi, and T. Yokota, “Development of optical instrument transformers,” IEEE Transactions on Power Delivery, vol. 5, no. 2, pp. 884–891, 1990.
[4]
S. Kobayashi, A. Horide, I. Takagi et al., “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Transactions on Power Delivery, vol. 7, no. 2, pp. 815–821, 1992.
[5]
P. P. Chavez, F. Rahmatian, and N. A. F. Jaeger, “Accurate voltage measurement with electric field sampling using permittivity-shielding,” IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 362–368, 2002.
[6]
N. A. F. Jaeger and L. Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” Journal of Lightwave Technology, vol. 7, no. 2, pp. 229–235, 1989.
[7]
N. A. F. Jaeger and F. Rahmatian, “Integrated optics pockels cell high-voltage sensor,” IEEE Transactions on Power Delivery, vol. 10, no. 1, pp. 127–134, 1995.
[8]
C. P. Yakymyshyn, M. A. Brubaker, P. M. Johnston, and C. Reinbold, “Manufacturing challenges of optical current and voltage sensors for utility applications,” in Sensors and Controls for Advanced Manufacturing, vol. 3201 of Proceedings of SPIE, pp. 2–19, 1997.
[9]
K. Bohnert, P. Gabus, H. Br?ndle, and A. Khan, “Fiber-optic current and voltage sensors for high-voltage substations,” in Proceedings of the 16th International Conference on Optical Fiber Sensors, pp. 752–754, 2003.
[10]
P. G. Kazansky, P. S. J. Russell, and H. Takebe, “Glass fiber poling and applications,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1484–1493, 1997.
[11]
A. Michie, I. Bassett, and J. Haywood, “Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer,” Measurement Science and Technology, vol. 17, no. 5, pp. 1229–1233, 2006.
[12]
K. Bohnert, M. Ingold, and J. Kostovic, “Fiber-optic voltage sensor for SF6 gas-insulated high-voltage switchgear,” Applied Optics, vol. 38, no. 10, pp. 1926–1933, 1999.
[13]
K. Bohnert, J. Kostovic, and P. Pequignot, “Fiber optic voltage sensor for 420?kV electric power systems,” Optical Engineering, vol. 39, no. 11, pp. 3060–3067, 2000.
[14]
R. C. Allil and M. M. Werneck, “Optical high-voltage sensor based on fiber bragg grating and PZT piezoelectric ceramics,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 6, pp. 2118–2125, 2011.
[15]
D.-H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” Journal of Crystal Growth, vol. 142, no. 3-4, pp. 339–343, 1994.
[16]
A. Yoshikawa and V. Chani, “Growth of optical crystals by micro-pulling-down method,” MRS Bulletin, vol. 34, no. 4, pp. 266–270, 2009.
[17]
H. S. Fang, Z. W. Yan, and E. D. Bourret-Courchesne, “Numerical study of the micro-pulling-down process for sapphire fiber crystal growth,” Crystal Growth and Design, vol. 11, no. 1, pp. 121–129, 2011.
[18]
V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” Journal of Crystal Growth, vol. 204, no. 1, pp. 155–162, 1999.
[19]
J. B. Shim, J. H. Lee, A. Yoshikawa, M. Nikl, D. H. Yoon, and T. Fukuda, “Growth of Bi4Ge3O12 single crystal by the micro-pulling-down method from bismuth rich composition,” Journal of Crystal Growth, vol. 243, no. 1, pp. 157–163, 2002.
[20]
V. Chani, K. Lebbou, B. Hautefeuille, O. Tillement, and J.-M. Fourmigue, “Evaporation induced diameter control in fiber crystal growth by micro-pulling-down technique: Bi4Ge3O12,” Crystal Research and Technology, vol. 41, no. 10, pp. 972–978, 2006.
[21]
M. Zhuravleva, V. I. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” Journal of Crystal Growth, vol. 310, no. 7–9, pp. 2152–2156, 2008.
[22]
K. Bohnert and J. Nehring, “Method and device for the optical determination of a physical quantity,” U.S. Patent 5,715,058, 1998.
[23]
L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” Journal of the Optical Society of America B, vol. 19, no. 11, pp. 2704–2715, 2002.
[24]
K. Bohnert and J. Nehring, “Fiber-optic sensing of electric field components,” Applied Optics, vol. 27, no. 23, pp. 4814–4818, 1988.
[25]
K. Bohnert and J. Nehring, “Fiber-optic sensing of voltages by line integration of the electric field,” Optics Letters, vol. 14, pp. 290–292, 1989.
[26]
G. Montemezzani, St. Pf?ndler, and P. Günter, “Electro-optic and photorefractive properties of Bi4Ge3O12 crystals in the ultraviolet spectral range,” Journal of the Optical Society of America B, vol. 9, pp. 1110–1117, 1992.
[27]
P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, “Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12),” Applied Optics, vol. 35, no. 19, pp. 3562–3569, 1996.
[28]
V. D. Golyshev, M. A. Gonik, and V. B. Tsvetovsky, “Spectral absorptivity and thermal conductivity of BGO and BSO melts and single crystals,” International Journal of Thermophysics, vol. 29, no. 4, pp. 1480–1490, 2008.
[29]
T. D. Flaim, Y. Wang, and R. Mercado, “High refractive index polymer coatings for optoelectronics applications,” in Advances in Optical Thin Films, vol. 5250 of Proceedings of SPIE, 2004.
[30]
C. Lü, Z. Cui, Y. Wang et al., “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” Journal of Materials Chemistry, vol. 13, no. 9, pp. 2189–2195, 2003.
[31]
B. M. Epelbaum, K. Inaba, S. Uda et al., “A double-die modification of micro-pulling-down method for in situ clad/core doping of fiber crystal,” Journal of Crystal Growth, vol. 179, no. 3-4, pp. 559–566, 1997.
[32]
S. G. Raymond, B. J. Luff, P. D. Townsend, X. Feng, and G. Hu, “Thermoluminescence spectra of doped Bi4Ge3O12,” Radiation Measurements, vol. 23, no. 1, pp. 195–202, 1994.