A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd), 2,4-dichlorophenoxyacetate (2,4-D), and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the change of fluorescence emission, before and after the exposure. The linear detection ranges for Cu, Pb, and Cd were 2.5–10.0?μg/L, 0.5–5.0?μg/L, and 0.5–10.0?μg/L, respectively, while 2,4-D and chlorpyrifos shared similar linear ranges of 0.05–0.75 μg/L. The biosensor showed good sensitivity with the lowest limits of detection (LLD) for Cu, Pb, Cd, 2,4-D and chlorpyrifos determined at 1.195?μg/L, 0.100?μg/L, 0.027?μg/L, 0.025?μg/L, and 0.025?μg/L, respectively. The overall reproducibility of the biosensor ( ) was <±6.35%. The biosensor had been tested with different combinations of toxicants, with the results showing predominantly antagonistic responses. The results confirmed that the biosensor constructed in this report is suitable to be used in quantitative and qualitative detections of heavy metals and pesticides. 1. Introduction Industrial and agricultural activities release tonnes of heavy metals and pesticides into the environment. With all these toxicants widespread and threatening the safety of environment, the development of sensitive and fast responding detection devices, which can respond to these toxicants, is pressingly needed. Conventional analytical equipment for heavy metals and pesticides detection, such as high-performance chromatography and atomic absorption spectrometer is not designed to distinguish whether the toxicants are bioavailable or nonbioavailable to biological systems [1]. In contrast, biosensors are capable of showing the real impact of environment toxicants on living organisms [2, 3]. Whole cell biosensors can be used to detect wide range of changes in the environment and are suitable to be used for the detection of toxicants in the sample from unpredictable resources [4]. Few of the cells’ responses that have been utilized in whole cell biosensors are the oxygen release [5], fluorescence emission [6], and enzyme production [7]. The high sensitivity of certain cells to the environmental toxicants such as heavy metals and pesticides has made them good candidates in biosensors [8–11]. By far, some whole cell biosensors have been
References
[1]
X. Liu, K. J. Germaine, D. Ryan, and D. N. Dowling, “Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls,” Sensors, vol. 10, no. 2, pp. 1377–1398, 2010.
[2]
N. Verma, H. Kaur, and S. Kumar, “Whole cell based electrochemical biosensor for monitoring lead ions in milk,” Biotechnology, vol. 10, no. 3, pp. 259–266, 2011.
[3]
C. Védrine, J.-C. Leclerc, C. Durrieu, and C. Tran-Minh, “Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides,” Biosensors and Bioelectronics, vol. 18, no. 4, pp. 457–463, 2003.
[4]
A. Bentley, A. Atkinson, J. Jezek, and D. M. Rawson, “Whole cell biosensors—electrochemical and optical approaches to ecotoxicity testing,” Toxicology in Vitro, vol. 15, no. 4-5, pp. 469–475, 2001.
[5]
I. Shitanda, S. Takamatsu, K. Watanabe, and M. Itagaki, “Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds,” Electrochimica Acta, vol. 54, no. 21, pp. 4933–4936, 2009.
[6]
W. L. Shing, L. Y. Heng, and S. Surif, “The fluorometric response of cyanobateria to short exposure of heavy metal,” Advances in Environmental Biology, vol. 6, no. 1, pp. 103–108, 2012.
[7]
C. Chouteau, S. Dzyadevych, C. Durrieu, and J.-M. Chovelon, “A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples,” Biosensors and Bioelectronics, vol. 21, no. 2, pp. 273–281, 2005.
[8]
K. R. Rogers, “Biosensors for environmental applications,” Biosensors and Bioelectronics, vol. 10, no. 6-7, pp. 533–541, 1995.
[9]
R. Carpentier, C. Loranger, J. Chartrand, and M. Purcell, “Photoelectrochemical cell containing chloroplast membranes as a biosensor for phytotoxicity measurements,” Analytica Chimica Acta, vol. 249, no. 1, pp. 55–60, 1991.
[10]
M. T. Giardi, M. Koblízek, and J. Masojídek, “Photosystem II-based biosensors for the detection of pollutants,” Biosensors and Bioelectronics, vol. 16, no. 9–12, pp. 1027–1033, 2001.
[11]
T. C. Chay, S. Surif, and L. Y. Heng, “A copper toxicity biosensor using immobilized cyanobacteria, Anabaena torulosa,” Sensor Letters, vol. 3, no. 1, pp. 49–54, 2005.
[12]
J. C. Philp, S. Balmand, E. Hajto et al., “Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste,” Analytica Chimica Acta, vol. 487, no. 1, pp. 61–74, 2003.
[13]
L. Rotariu, C. Bala, and V. Magearu, “Yeast cells sucrose biosensor based on a potentiometric oxygen electrode,” Analytica Chimica Acta, vol. 458, no. 1, pp. 215–222, 2002.
[14]
C. A. Sanders, M. Rodriguez Jr., and E. Greenbaum, “Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction,” Biosensors and Bioelectronics, vol. 16, no. 7-8, pp. 439–446, 2001.
[15]
C. Y. Shao, C. J. Howe, A. J. R. Porter, and L. A. Glover, “Novel cyanobacterial biosensor for detection of herbicides,” Applied and Environmental Microbiology, vol. 68, no. 10, pp. 5026–5033, 2002.
[16]
G. Strachan, S. Preston, H. Maciel, A. J. R. Porter, and G. I. Paton, “Use of bacterial biosensors to interpret the toxicity and mixture toxicity of herbicides in freshwater,” Water Research, vol. 35, no. 14, pp. 3490–3495, 2001.
[17]
M. Tauber, R. Rosen, and S. Belkin, “Whole-cell biodetection of halogenated organic acids,” Talanta, vol. 55, no. 5, pp. 959–964, 2001.
[18]
S.-K. Kim, H.-D. Kwen, and S.-H. Choi, “Fabrication of a microbial biosensor based on QD-MWNT supports by a one-step radiation reaction and detection of phenolic compounds in red wines,” Sensors, vol. 11, no. 2, pp. 2001–2012, 2011.
[19]
G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 42, no. 1, pp. 313–349, 1991.
[20]
D. Campbell, V. Hurry, A. K. Clarke, P. Gustafsson, and G. ?quist, “Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 667–683, 1998.
[21]
I. A. Kobbia, M. G. Battah, E. F. Shabana, and H. M. Eladel, “Chlorophyll a fluorescence and photosynthetic activity as tools for the evaluation of simazine toxicity to Protosiphon botryoides and Anabaena variabilis,” Ecotoxicology and Environmental Safety, vol. 49, no. 2, pp. 101–105, 2001.
[22]
L. Y. Heng, K. Jusoh, C. H. Mui Ling, and M. Idris, “Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae,” Bulletin of Environmental Contamination and Toxicology, vol. 72, no. 2, pp. 373–379, 2004.
[23]
W. L. Shing, S. Surif, and L. Y. Heng, “Toxicity biosensor for the evaluation of cadmium toxicity based on photosynthetic behavior of cyanobacteria Anabaean torulosa,” Asian Journal of Biochemistry, vol. 3, no. 3, pp. 162–168, 2008.
[24]
M. K. Shukla, R. D. Tripathi, N. Sharma et al., “Responses of cyanobacterium Anabaena doliolum during nickel stress,” Journal of Environmental Biology, vol. 30, no. 5, pp. 871–876, 2009.
[25]
T. Backhaus, R. Altenburger, W. Boedeker, M. Faust, M. Scholze, and L. H. Grimme, “Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri,” Environmental Toxicology and Chemistry, vol. 19, no. 9, pp. 2348–2356, 2000.
[26]
N. L. Cooper, J. R. Bidwell, and A. Kumar, “Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata,” Ecotoxicology and Environmental Safety, vol. 72, no. 5, pp. 1523–1528, 2009.
[27]
K. T. Kim, Y. G. Lee, and S. D. Kim, “Combined toxicity of copper and phenol derivatives to Daphnia magna: effect of complexation reaction,” Environment International, vol. 32, no. 4, pp. 487–492, 2006.
[28]
D. Frense, A. Müller, and D. Beckmann, “Detection of environmental pollutants using optical biosensor with immobilized algae cells,” Sensors and Actuators B, vol. 51, no. 1–3, pp. 256–260, 1998.
[29]
L. Campanella, F. Cubadda, M. P. Sammartino, and A. Saoncella, “An algal biosensor for the monitoring of water toxicity in estuarine environments,” Water Research, vol. 35, no. 1, pp. 69–76, 2001.
[30]
C. Durrieu and C. Tran-Minh, “Optical algal biosensor using alkaline phosphatase for determination of heavy metals,” Ecotoxicology and Environmental Safety, vol. 51, no. 3, pp. 206–209, 2002.
[31]
H. Wang, X. J. Wang, J. F. Zhao, and L. Chen, “Toxicity assessment of heavy metals and organic compounds using CellSense biosensor with E.coli,” Chinese Chemical Letters, vol. 19, no. 2, pp. 211–214, 2008.
[32]
F. Amaro, A. P. Turkewitz, A. Martín-González, and J.-C. Gutiérrez, “Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila,” Microbial Biotechnology, vol. 4, no. 4, pp. 513–522, 2011.
[33]
D. Voet, J. G. Voet, and C. W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, New York, NY, USA, 2009.
[34]
C. Cervantes and F. Gutierrez-Corona, “Copper resistance mechanisms in bacteria and fungi,” FEMS Microbiology Reviews, vol. 14, no. 2, pp. 121–138, 1994.
[35]
R. Rouillona, M. Tocabens, and R. Carpentier, “A photoelectrochemical cell for detecting pollutant-induced effects on the activity of immobilized cyanobacterium Synechococcus sp. PCC 7942,” Enzyme and Microbial Technology, vol. 25, no. 3-5, pp. 230–235, 1999.
[36]
M. Tissut, G. Taillandier, P. Ravanel, and J.-L. Benoit-Guyod, “Effects of chlorophenols on isolated class A chloroplasts and thylakoids: a QSAR Study,” Ecotoxicology and Environmental Safety, vol. 13, no. 1, pp. 32–42, 1987.
[37]
B. I. Escher, M. Snozzi, and R. P. Schwarzenbach, “Uptake, speciation, and uncoupling activity of substituted phenols in energy transducing membranes,” Environmental Science and Technology, vol. 30, no. 10, pp. 3071–3079, 1996.
[38]
J. Ma, N. Lu, W. Qin, R. Xu, Y. Wang, and X. Chen, “Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides,” Ecotoxicology and Environmental Safety, vol. 63, no. 2, pp. 268–274, 2006.
[39]
WHO, Guidelines For Drinking-Water Quality, vol. 1, World Health Organization, Geneva, Switzerland, 3rd edition, 2006.
[40]
H.-C. Tsai, R.-A. Doong, H.-C. Chiang, and K.-T. Chen, “Sol-gel derived urease-based optical biosensor for the rapid determination of heavy metals,” Analytica Chimica Acta, vol. 481, no. 1, pp. 75–84, 2003.
[41]
G. A. Zhylyak, S. V. Dzyadevich, Y. I. Korpan, A. P. Soldatkin, and A. V. El'skaya, “Application of urease conductometric biosensor for heavy-metal ion determination,” Sensors and Actuators B, vol. 24, no. 1–3, pp. 145–148, 1995.
[42]
P. Faller, K. Kienzler, and A. Krieger-Liszkay, “Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site,” Biochimica et Biophysica Acta, vol. 1706, no. 1-2, pp. 158–164, 2005.
[43]
M. D. Hernando, M. Ejerhoon, A. R. Fernández-Alba, and Y. Chisti, “Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays,” Water Research, vol. 37, no. 17, pp. 4091–4098, 2003.
[44]
S. Chaperon and S. Sauvé, “Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation,” Ecotoxicology and Environmental Safety, vol. 70, no. 1, pp. 1–9, 2008.
[45]
A. N. Reshetilov, P. V. Iliasov, M. V. Donova et al., “Evaluation of a Gluconobacter oxydans whole cell biosensor for amperometric detection of xylose,” Biosensors and Bioelectronics, vol. 12, no. 3, pp. 241–247, 1997.
[46]
E. Akyilmaz, I. Ya?a, and E. Din?kaya, “Whole cell immobilized amperometric biosensor based on Saccharomyces cerevisiae for selective determination of vitamin B1 (thiamine),” Analytical Biochemistry, vol. 354, no. 1, pp. 78–84, 2006.