全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cooperative Spectrum Sensing and Localization in Cognitive Radio Systems Using Compressed Sensing

DOI: 10.1155/2013/606413

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose to fuse two main enabling features in cognitive radio systems (CRS): spectrum sensing and location awareness in a single compressed sensing based formalism. In this way, we exploit sparse characteristics of primary units to be detected, both in terms of spectrum used and location occupied. The compressed sensing approach also allows to overcome hardware limitations, in terms of the incapacity to acquire measurements and signals at the Nyquist rate when the spectrum to be scanned is large. Simulation results for realistic network topologies and different compressed sensing reconstruction algorithms testify to the performance and the feasibility of the proposed technique to enable in a single formalism the two main features of cognitive sensor networks. 1. Introduction Cognitive radio (CR) is a smart wireless communication concept that is able to promote the efficiency of the spectrum usage by exploiting the free frequency bands in the spectrum, namely, spectrum holes [1, 2]. Detection of spectrum holes, namely, spectrum sensing, is the first step towards implementing a cognitive radio system. The major problem for spectrum sensing arises in wideband radio, when the radio is not able to acquire signals at the Nyquist sampling rate due to the current limitations in Analog-to-Digital Converter (ADC) technology [3]. Compressive sensing makes it possible to reconstruct a sparse signal by taking less samples than Nyquist sampling, and thus wideband spectrum sensing is doable by compressed sensing (CS). A sparse signal or a compressible signal is a signal that is essentially dependent on a number of degrees of freedom which is smaller than the dimension of the signal sampled at Nyquist rate. In general, signals of practical interest may be only nearly sparse [3]. And typically signals in open networks are sparse in the frequency domain since depending on location, and at some times the percentage of spectrum occupancy is low due to the idle radios [1, 4]. In CS, a signal with a sparse representation in some basis can be recovered from a small set of nonadaptive linear measurements [5]. A sensing matrix takes few measurements of the signal, and the original signal can be reconstructed from the incomplete and contaminated observations accurately and sometimes exactly by solving a simple convex optimization problem [3, 6]. In [7, 8], conditions on this sensing matrix are introduced which are sufficient in order to recover the original signal stably. And remarkably, a random matrix fulfills the conditions with high probability and performs an effective

References

[1]  S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, 2005.
[2]  J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, 1999.
[3]  E. J. Candes, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, Invited Lecture, Madrid, Spain, August 2006.
[4]  Z. Tian and G. B. Giannakis, “Compressed sensing for wideband cognitive radios,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '07), pp. IV1357–IV1360, April 2007.
[5]  M. A. Davenport, M. B. Wakin, and R. G. Baraniuk, “Detection and estimation with compressive measurements,” Tech. Rep., Department of ECE, Rice University, 2006.
[6]  E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.
[7]  E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
[8]  E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006.
[9]  E. J. Candes and M. B. Wakin, “An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acquisition,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.
[10]  W. Guibene and D. Slock, “A combined spectrum sensing and terminals localization technique for cognitive radio networks,” in Proceedings of the IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Comm’s (WiMob '12), 2012.
[11]  W. Guibene and D. Slock, “A compressive sampling approach for spectrum sensing and terminals localization in cognitive radio networks,” in Proceedings of the IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD '12), Barcelona, Spain, October 2012.
[12]  M. G. Khoshkholgh, K. Navaie, and H. Yanikomeroglu, “Access strategies for spectrum sharing in fading environment: overlay, underlay, and mixed,” IEEE Transactions on Mobile Computing, vol. 9, no. 12, pp. 1780–1793, 2010.
[13]  G. Ding, Q. Wu, F. Song, X. Li, and J. Wang, “Joint exploration and exploitation of spatial-temporal spectrum hole for cognitive vehicle radios,” in Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC '11), September 2011.
[14]  S. Mumtaz, J. Bastos, J. Rodriguez, and C. Verikoukis, “Adaptive beamforming for OFDMA using positioning information,” in Proceedings of the Wireless Advanced (WiAd '11), pp. 7–14, June 2011.
[15]  WHERE2 Consortium, “Location-aided PHY/MAC Layer Design for Advanced Cognitive Radios,” Deliverable D3.3, 2012, http://www.kn-s.dlr.de/where2/index.php.
[16]  P. Cheraghi, Y. Ma, and R. Tafazolli, “Frequency-domain differential energy detection based on extreme statistics For OFDM source sensing,” in Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC '11-Spring), May 2011.
[17]  W. Guibene and D. Slock, “Degrees of freedom of downlink single- and multi-cell multi-user MIMO systems with location based CSIT,” in Proceedings of the IEEE 77th Vehicular Technology Conference (VTC '13-Spring), Dresden, Germany, 2013.
[18]  I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, 2006.
[19]  T. Yücek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp. 116–130, 2009.
[20]  S. Xu, Z. Zhao, and J. Shang, “Spectrum sensing based on cyclostationarity,” in Proceedings of the IEEE Workshop on Power Electronics and Intelligent Transportation System (PEITS '08), pp. 171–174, August 2008.
[21]  B. Zayen, Spectrum sensing and resource allocation strategies for cognitive radio [Ph.D. thesis], Telecom PariTech, 2010.
[22]  S. Muthukrishnan, Data Streams: Algorithms and Applications, Now Publishers, 2005.
[23]  J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007.
[24]  D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 58, no. 2, pp. 1094–1121, 2012.
[25]  M. Fornasier and H. Rauhut, “Iterative thresholding algorithms,” Applied and Computational Harmonic Analysis, vol. 25, no. 2, pp. 187–208, 2008.
[26]  T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Applied and Computational Harmonic Analysis, vol. 27, no. 3, pp. 265–274, 2009.
[27]  D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit,” Foundations of Computational Mathematics, vol. 9, no. 3, pp. 317–334, 2009.
[28]  D. Needell and J. A. Tropp, “CoSaMP: iterative signal recovery from incomplete and inaccurate samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–321, 2009.
[29]  E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9-10, pp. 589–592, 2008.
[30]  COST 231, “Urban transmission loss models for mobile radio in the 900- and 1800?MHz bands,” TD(90)119 Revision 2, September, 1991.
[31]  Y. Zhao, Enabling cognitive radios through radio environment maps [Ph.D. thesis], Virginia Polytechnic Institute and State University, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133