全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Radio Context Awareness and Applications

DOI: 10.1155/2013/491092

Full-Text   Cite this paper   Add to My Lib

Abstract:

The context refers to “any information that can be used to characterize the situation of an entity, where an entity can be a person, place, or physical object.” Radio context awareness is defined as the ability of detecting and estimating a system state or parameter, either globally or concerning one of its components, in a radio system for enhancing performance at the physical, network, or application layers. In this paper, we review the fundamentals of context awareness and the recent advances in the main radio techniques that increase the context awareness and smartness, posing challenges and renewed opportunities to added-value applications in the context of the next generation of wireless networks. 1. Introduction Modern wireless systems are required to manage radio resources in an effective and flexible manner in order to maximize the network capacity. Moreover, they are increasing their complexity and pervasiveness in the real world at several scales, giving rise to heterogeneous, more decentralized, and sophisticated systems. In this context, next generation radio systems are required to achieve high capacity, high reliability, flexibility, adaptivity, and full support to innovative applications and services that make use of the awareness of both the context and the surrounding environment. Therefore, collaboration, awareness, smartness, and adaptivity are the keywords of a trend that involves all the radio technologies, from wireless personal area networks (WPAN) to wireless metropolitan area networks/wide area networks (WMAN/WAN) and wireless regional area networks (WRAN) as depicted in Figure 1. Wireless sensor networks (WSN), whose radio technologies belong mainly to WPAN, play a fundamental role in the field of radio context awareness: these sensing networks are usually composed of a large number of low-power, inexpensive, and long-life nodes with sensing, computation, and wireless communication capabilities, and they can produce, with several degrees of performance and complexity, the features and the related applications that will be discussed in this paper. Figure 1: Current scenario of radio technologies and standards. Acronyms between square brackets are examples of tecnhologies based on the corresponding standards. As stated efficaciously in [1], context regards “any information that can be used to characterize the situation of an entity, where an entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves.” Therefore, radio

References

[1]  A. K. Dey and G. D. Abowd, “Towards a better understanding of context and context-awareness,” in Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing (HUC '99), pp. 304–307, Springer, 1999.
[2]  T. Yücek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp. 116–130, 2009.
[3]  I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum sensing in cognitive radio networks: a survey,” Physical Communication, vol. 4, no. 1, pp. 40–62, 2011.
[4]  H. Celebi and H. Arslan, “Enabling location and environment awareness in cognitive radios,” Computer Communications, vol. 31, no. 6, pp. 1114–1125, 2008.
[5]  S. Yarkan and H. Arslan, “Exploiting location awareness toward improved wireless system design in cognitive radio,” IEEE Communications Magazine, vol. 46, no. 1, pp. 128–136, 2008.
[6]  H. Celebi, I. Güven?, S. Gezici, and H. Arslan, “Cognitive-radio systems for spectrum, location, and environmental awareness,” IEEE Antennas and Propagation Magazine, vol. 52, no. 4, pp. 41–61, 2010.
[7]  F. K. Jondral, “Cognitive radio: a communications engineering view,” IEEE Wireless Communications, vol. 14, no. 4, pp. 28–33, 2007.
[8]  L. M. Correia, D. Zeller, O. Blume et al., “Challenges and enabling technologies for energy aware mobile radio networks,” IEEE Communications Magazine, vol. 48, no. 11, pp. 66–72, 2010.
[9]  B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: a survey,” IEEE Journal on Selected Topics in Signal Processing, vol. 5, no. 1, pp. 5–23, 2011.
[10]  J. Wang, M. Ghosh, and K. Challapali, “Emerging cognitive radio applications: a survey,” IEEE Communications Magazine, vol. 49, no. 3, pp. 74–81, 2011.
[11]  S. Morosi, T. Bianchi, and F. Gei, “Frequency domain multiuser receivers for an IEEE 802. 15. 4a short range communication network,” Transactions on Emerging Telecommunications Technologies.
[12]  S. Morosi, P. Piunti, and E. del Re, “Sleep mode management in cellular networks: a traffic based technique enabling energy saving,” Transactions on Emerging Telecommunications Technologies, vol. 24, no. 3, pp. 331–341, 2013.
[13]  L. Atzori, A. Iera, and G. Morabito, “The Internet of things: a survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.
[14]  L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor networks towards the Internet of Things: a survey,” in Proceedings of the 19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM '11), pp. 16–21, September 2011.
[15]  J. Mitola, Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio [Ph.D. thesis], Royal Institute of Technology, Stockholm, Sweden, 2000.
[16]  J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, 1999.
[17]  J. M. Peha, “Sharing spectrum through spectrum policy reform and cognitive radio,” Proceedings of the IEEE, vol. 97, no. 4, pp. 708–719, 2009.
[18]  S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, 2005.
[19]  J. O. Neel, Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management Algorithms [Ph.D. thesis], Virginia Polytechnic Institute and State University, 2006.
[20]  G. Ding, J. Wang, Q. Wu, and Y. Gong, “System info of multi-domain cognition in cognitive radio networks,” in Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP '10), pp. 1–4, October 2010.
[21]  Z. Wenzhu and Y. Bohai, “Approach for local multi-domain cognition in cognitive network,” Communications, China, vol. 10, no. 1, pp. 146–156, 2013.
[22]  S. Preradovic, N. C. Karmakar, and I. Balbin, “RFID transponders,” IEEE Microwave Magazine, vol. 9, no. 5, pp. 90–103, 2008.
[23]  K. V. S. Rao, P. V. Nikitin, and S. F. Lam, “Antenna design for UHF RFID tags: a review and a practical application,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 12, pp. 3870–3876, 2005.
[24]  R. Want, “An introduction to RFID technology,” IEEE Pervasive Computing, vol. 5, no. 1, pp. 25–33, 2006.
[25]  L. Zhu and T.-S. P. Yum, “A critical survey and analysis of RFID anti-collision mechanisms,” IEEE Communications Magazine, vol. 49, no. 5, pp. 214–221, 2011.
[26]  V. P. Plessky and L. M. Reindl, “Review on SAW RFID tags,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 3, pp. 654–668, 2010.
[27]  X. Zhu, S. K. Mukhopadhyay, and H. Kurata, “A review of RFID technology and its managerial applications in different industries,” Journal of Engineering and Technology Management, vol. 29, no. 1, pp. 152–167, 2012.
[28]  E. Ilie-Zudor, Z. Kemény, F. van Blommestein, L. Monostori, and A. van der Meulen, “A survey of applications and requirements of unique identification systems and RFID techniques,” Computers in Industry, vol. 62, no. 3, pp. 227–252, 2011.
[29]  J. Romero, “No more waiting on near field communication,” IEEE Spectrum, vol. 49, no. 6, 64 pages, 2012.
[30]  R. Want, “Near field communication,” IEEE Pervasive Computing, vol. 10, no. 3, pp. 4–7, 2011.
[31]  J. Garcia, A. Arriola, F. Casado, X. Chen, J. Sancho, and D. Valderas, “Coverage and read range comparison of linearly and circularly polarised radio frequency identification ultra-high frequency tag antennas,” IET Microwaves, Antennas and Propagation, vol. 6, no. 9, pp. 1070–1078, 2012.
[32]  Z. Xing, L. Wang, C. Wu, and K. Wei, “Study of broadband near-field antenna for ultra-high-frequency radio frequency identification applications,” IET Microwaves, Antennas and Propagation, vol. 5, no. 14, pp. 1661–1669, 2011.
[33]  C. Cho, J. Ryoo, I. Park, and H. Choo, “Design of a novel ultra-high frequency radio-frequency identification reader antenna for near-field communications using oppositely directed currents,” IET Microwaves, Antennas and Propagation, vol. 4, no. 10, pp. 1543–1548, 2010.
[34]  I. Zuazola, A. Sharma, J. Batchelor et al., “Radio frequency identification miniature interrogator antenna sprayed over an in-vehicle chassis,” IET Microwaves, Antennas and Propagation, vol. 6, no. 15, pp. 1674–1680, 2012.
[35]  R. C. Hadarig, M. E. de Cos, Y. áLvarez, and F. Las-Heras, “Novel bow-tie antenna on artificial magnetic conductor for 5.8 GHz radio frequency identification tags usable with metallic objects,” IET Microwaves, Antennas and Propagation, vol. 5, no. 9, pp. 1097–1102, 2011.
[36]  H.-G. Cho, N. R. Labadie, and S. K. Sharma, “Design of an embedded-feed type microstrip patch antenna for UHF radio frequency identification tag on metallic objects,” IET Microwaves, Antennas and Propagation, vol. 4, no. 9, pp. 1232–1239, 2010.
[37]  G. Orecchini, F. Alimenti, V. Palazzari, A. Rida, M. M. Tentzeris, and L. Roselli, “Design and fabrication of ultra-low cost radio frequency identification antennas and tags exploiting paper substrates and inkjet printing technology,” IET Microwaves, Antennas and Propagation, vol. 5, no. 8, pp. 993–1001, 2011.
[38]  C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet fingerprinting of radio-frequency identification (RFID) tags,” IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4843–4850, 2012.
[39]  L. Catarinucci, S. Tedesco, and L. Tarricone, “Customized ultra high frequency radio frequency identification tags and reader antennas enabling reliable mobile robot navigation,” IEEE Sensors Journal, vol. 13, no. 2, pp. 783–791, 2013.
[40]  A. Polycarpou, A. Dimitriou, A. Bletsas et al., “On the design, installation, and evaluation of a radio-frequency identification system for healthcare applications,” IEEE Antennas and Propagation Magazine, vol. 54, no. 4, pp. 255–271, 2012.
[41]  S. Sigg, M. Scholz, S. Shi, Y. Ji, and M. Beigl, “RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals,” IEEE Transactions on Mobile Computing, 2013.
[42]  B. Mrazovac, M. Z. Bjelica, D. R. Kukolj, B. M. Todorovi?, and N. Teslic, “A human detection method f or residential smart energy systems based on Zigbee RSSI changes,” in Proceedings of the IEEE International Conference on Consumer Electronics (ICCE '12), pp. 110–111, January 2012.
[43]  O. Kaltiokallio and M. Bocca, “Real-time intrusion detection and tracking in indoor environment through distributed RSSI processing,” in Proceedings of the 17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA '11), pp. 61–70, August 2011.
[44]  C. Zhou, J. Downey, J. Choi, D. Stancil, J. Paramesh, and T. Mukherjee, “A shoe-embedded RF sensor for motion detection,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp. 169–171, 2011.
[45]  T. Akiyama, T. Ikegami, and K. Takizawa, “A non-invasive detection of respiration by using ultra wideband signals,” in Proceedings of the 15th International Symposium on Wireless Personal Multimedia Communications (WPMC '12), pp. 514–518, 2012.
[46]  A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, “Vital signs monitoring using impulse based UWB signal,” in Proceedings of the 41st European Microwave Conference (EuMC '11), pp. 135–138, October 2011.
[47]  R. R. Fletcher and S. Kulkarni, “Wearable doppler radar with integrated antenna for patient vital sign monitoring,” in Proceedings of the IEEE Radio and Wireless Symposium (RWS '10), pp. 276–279, January 2010.
[48]  G. Reyes, D. Wang, R. Nair, C. Li, X. Li, and J. Lin, “VitalTrack: a doppler radar sensor platform for monitoring activity levels,” in Proceedings of the IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS '12), pp. 29–32, January 2012.
[49]  M. Segura, V. Mut, and C. Sisterna, “Ultra wideband indoor navigation system,” IET Radar, Sonar and Navigation, vol. 6, no. 5, pp. 402–411, 2012.
[50]  T. Sakamoto and T. Sato, “Two-dimensional ultrawideband radar imaging of a target with arbitrary translation and rotation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4493–4502, 2011.
[51]  C. Debes, J. Hahn, A. M. Zoubir, and M. G. Amin, “Target discrimination and classification in through-the-wall radar imaging,” IEEE Transactions on Signal Processing, vol. 59, no. 10, pp. 4664–4676, 2011.
[52]  C. Debes, J. Riedler, A. M. Zoubir, and M. G. Amin, “Adaptive target detection with application to through-the-wall radar imaging,” IEEE Transactions on Signal Processing, vol. 58, no. 11, pp. 5572–5583, 2010.
[53]  N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, 2005.
[54]  J. Zhou and J. Shi, “RFID localization algorithms and applications a review,” Journal of Intelligent Manufacturing, vol. 20, no. 6, pp. 695–707, 2009.
[55]  G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network localization techniques,” Computer Networks, vol. 51, no. 10, pp. 2529–2553, 2007.
[56]  J. Wang, R. Ghosh, and S. Das, “A survey on sensor localization,” Journal of Control Theory and Applications, vol. 8, no. 1, pp. 2–11, 2010.
[57]  S. Gezici and H. V. Poor, “Position estimation via ultra-wide-band signals,” Proceedings of the IEEE, vol. 97, no. 2, pp. 386–403, 2009.
[58]  H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 37, no. 6, pp. 1067–1080, 2007.
[59]  I. Güven? and C.-C. Chong, “A survey on TOA based wireless localization and NLOS mitigation techniques,” IEEE Communications Surveys and Tutorials, vol. 11, no. 3, pp. 107–124, 2009.
[60]  D. Macagnano, G. Destino, and G. Abreu, “A comprehensive tutorial on localization: algorithms and performance analysis tools,” International Journal of Wireless Information Networks, vol. 19, no. 4, pp. 290–314, 2012.
[61]  Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp. 13–32, 2009.
[62]  S. Gezici, “A survey on wireless position estimation,” Wireless Personal Communications, vol. 44, no. 3, pp. 263–282, 2008.
[63]  Y. Shen and M. Z. Win, “Fundamental limits of wideband localization. Part I: a general framework,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 4956–4980, 2010.
[64]  Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of wideband localization. Part II: cooperative networks,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 4981–5000, 2010.
[65]  I. Bilik, K. Adhikari, and J. R. Buck, “Shannon capacity bound on mobile station localization accuracy in urban environments,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 6206–6216, 2011.
[66]  G. Giorgetti, S. K. S. Gupta, and G. Manes, “Understanding the limits of RF-based collaborative localization,” IEEE/ACM Transactions on Networking, vol. 19, no. 6, pp. 1638–1651, 2011.
[67]  Y. Cheng, X. Wang, T. Caelli, X. Li, and B. Moran, “Optimal nonlinear estimation for localization of wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 5674–5685, 2011.
[68]  M. A. Caceres, F. Penna, H. Wymeersch, and R. Garello, “Hybrid cooperative positioning based on distributed belief propagation,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 10, pp. 1948–1958, 2011.
[69]  J. Prieto, S. Mazuelas, A. Bahillo, P. Fernández, R. M. Lorenzo, and E. J. Abril, “Adaptive data fusion for wireless localization in harsh environments,” IEEE Transactions on Signal Processing, vol. 60, no. 4, pp. 1585–1596, 2012.
[70]  R. C. Luo and O. Chen, “Wireless and pyroelectric sensory fusion system for indoor human/robot localization and monitoring,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 3, pp. 845–853, 2013.
[71]  B.-C. Seet, Q. Zhang, C. H. Foh, and A. C. M. Fong, “Hybrid RF mapping and Kalman filtered spring relaxation for sensor network localization,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1427–1435, 2012.
[72]  S.-H. Fang and T.-N. Lin, “Cooperative multi-radio localization in heterogeneous wireless networks,” IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp. 1547–1551, 2010.
[73]  S. H. Fang, “Cross-provider cooperation for improved network-based localization,” IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp. 297–305, 2013.
[74]  M. Panizza, C. Sacchi, J. Varela-Miguez et al., “Feasibility study of a SDR-based reconfigurable terminal for emergency applications,” in Proceedings of the IEEE Aerospace Conference (AERO '11), pp. 1–5, March 2011.
[75]  S. Morosi, E. Del Re, and A. Martinelli, “P2P cooperative GPS positioning with fine/coarse time assistance,” in Proceedings of the International Conference on Localization and GNSS (ICL-GNSS '13), pp. 1–5, 2013.
[76]  M. Berioli, A. Molinaro, S. Morosi, and S. Scalise, “Aerospace communications for emergency applications,” Proceedings of IEEE, vol. 99, no. 11, pp. 1922–1938, 2011.
[77]  S.-H. Fang and C.-H. Wang, “A dynamic hybrid projection approach for improved Wi-Fi location fingerprinting,” IEEE Transactions on Vehicular Technology, vol. 60, no. 3, pp. 1037–1044, 2011.
[78]  Y. Kim, Y. Chon, and H. Cha, “Smartphone-based collaborative and autonomous radio fingerprinting,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 42, no. 1, pp. 112–122, 2012.
[79]  M. Bshara, U. Orguner, F. Gustafsson, and L. van Biesen, “Fingerprinting localization in wireless networks based on received-signal-strength measurements: a case study on WiMAX networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 1, pp. 283–294, 2010.
[80]  R. Martin, A. King, J. Pennington, R. Thomas, R. Lenahan, and C. Lawyer, “Modeling and mitigating noise and nuisance parameters in received signal strength positioning,” IEEE Transactions on Signal Processing, vol. 60, no. 10, pp. 5451–5463, 2012.
[81]  H. C. So and L. Lin, “Linear least squares approach for accurate received signal strength based source localization,” IEEE Transactions on Signal Processing, vol. 59, no. 8, pp. 4035–4040, 2011.
[82]  á. F. García-Fernández, M. R. Morelande, and J. Grajal, “Multitarget simultaneous localization and mapping of a sensor network,” IEEE Transactions on Signal Processing, vol. 59, no. 10, pp. 4544–4558, 2011.
[83]  S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1592–1597, 2011.
[84]  K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electronics Letters, vol. 48, no. 4, pp. 228–230, 2012.
[85]  S. S. Saad and Z. S. Nakad, “A standalone RFID indoor positioning system using passive tags,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1961–1970, 2011.
[86]  Y. Zhao, N. Patwari, P. Agrawal, and M. Rabbat, “Directed by directionality: benefiting from the gain pattern of active RFID badges,” IEEE Transactions on Mobile Computing, vol. 11, no. 5, pp. 865–877, 2012.
[87]  S. Park and H. Lee, “Self-recognition of vehicle position using UHF passive RFID tags,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 226–234, 2013.
[88]  N. Drawil, H. Amar, and O. Basir, “GPS localization accuracy classification: a context-based approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 262–273, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133