全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development and Application of the Single-Spiral Inductive-Capacitive Resonant Circuit Sensor for Wireless, Real-Time Characterization of Moisture in Sand

DOI: 10.1155/2013/894512

Full-Text   Cite this paper   Add to My Lib

Abstract:

A wireless, passive embedded sensor was designed and fabricated for monitoring moisture in sand. The sensor, consisted of an inductive-capacitive (LC) resonant circuit, was made of a printed spiral inductor embedded inside sand. When exposed to an electromagnetic field, the sensor resonated at a specific frequency dependent on the inductance of the inductor and its parasitic capacitance. Since the permittivity of water was much higher than dry sand, moisture in sample increased the parasitic capacitance, thus decreasing the sensor’s resonant frequency. Therefore, the internal moisture level of the sample could be easily measured through tracking the resonant frequency using a detection coil. The fabrication process of this sensor is much simpler compared to LC sensors that contain both capacitive and inductive elements, giving it an economical advantage. A study was conducted to investigate the drying rate of sand samples of different grain sizes. The experimental data showed a strong correlation with the actual moisture content in the samples. The described sensor technology can be applied for long term monitoring of localized water content inside soils and sands to understand the environmental health in these media, or monitoring moisture levels within concrete supports and road pavement. 1. Introduction Monitoring of water content in porous mechanical structures is important in ensuring and predicting their mechanical integrity. For example, monitoring water content in asphalt is critical for assessing its structural stability because the bond between asphalt and aggregate particles can be broken or reduced in strength due to the presence of unwanted moisture. Similarly, it is important in concrete mixing to take into consideration the natural moisture of aggregates during the mix design to ensure proper slump and compressive strength of the resulting concrete structure [1]. Several methods currently exist for measuring water content in civil constructs. A common method involves determining the mass of a sample before and after drying. The disadvantages of this method include the need to remove the material (or a sample), the length of the drying process, and the possibility of degrading the sample as a result of heating. Additional complications can arise when moisture-sensitive environments must be breeched to collect the sample for drying. A more sophisticated method for measuring water content consists of two insulated conductor probes. The permittivity of the medium will depend on water content between the probes and can be determined by

References

[1]  J. S. Miller and W. Y. Bellinger, Distress Identification Manual for the Long-Term Pavement Performance Program, Publication no. FHWA-RD 03-031, FHWA, Office of Infrastructure Research and Development, McLean, Va, USA, 2003.
[2]  H. Eller and A. Denoth, “A capacitive soil moisture sensor,” Journal of Hydrology, vol. 185, no. 1–4, pp. 137–146, 1996.
[3]  E. Grinzato, V. Vavilov, and T. Kauppinen, “Quantitative infrared thermography in buildings,” Energy and Buildings, vol. 29, no. 1, pp. 1–9, 1998.
[4]  J. V. Stafford, “Remote, non-contact and in-situ measurement of soil moisture content: a review,” Journal of Agricultural Engineering Research, vol. 41, no. 3, pp. 151–172, 1988.
[5]  S. Nakayama, “Development of a microwave moisture sensor for aggregates,” Measurement Science and Technology, vol. 6, no. 4, pp. 429–431, 1995.
[6]  K. G. Ong and C. A. Grimes, “A carbon nanotube-based sensor for CO2 monitoring,” Sensors, vol. 1, no. 6, pp. 193–205, 2001.
[7]  K. G. Ong, J. S. Bitler, C. A. Grimes, L. G. Puckett, and L. G. Bachas, “Remote query resonant-circuit sensors for monitoring of bacteria growth: application to food quality control,” Sensors, vol. 2, no. 6, pp. 219–232, 2002.
[8]  K. G. Ong, J. Wang, R. S. Singh, L. G. Bachas, and C. A. Grimes, “Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing,” Biosensors and Bioelectronics, vol. 16, no. 4-5, pp. 305–312, 2001.
[9]  K. G. Ong, L. G. Puckett, B. V. Sharma, M. Loiselle, C. A. Grimes, and L. G. Bachas, “Wireless, passive, resonant-circuit sensors for monitoring food quality,” in Chemical and Biological Early Warning Monitoring for Water, Food, and Ground, vol. 4575 of Proceedings of SPIE, pp. 150–159, 2002.
[10]  K. G. Ong, C. A. Grimes, C. L. Robbins, and R. S. Singh, “Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor,” Sensors and Actuators A, vol. 93, no. 1, pp. 33–43, 2001.
[11]  K. G. Ong and C. A. Grimes, “A resonant printed-circuit sensor for remote query monitoring of environmental parameters,” Smart Materials and Structures, vol. 9, no. 4, pp. 421–428, 2000.
[12]  A. Tetelin, V. Pouget, J.-L. Lachaud, and C. Pellet, “Dynamic behavior of a chemical sensor for humidity level measurement in human breath,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 4, pp. 1262–1267, 2004.
[13]  J. Laconte, V. Wilmart, D. Flandre, and J.-P. Raskin, “High-sensitivity capacitive humidity sensor using 3-layer patterned polyimide sensing film,” in Proceedings of the 2nd IEEE International Conference on Sensors, vol. 1, pp. 372–377, October 2003.
[14]  H. Shimizu, H. Matsumoto, M. Asakura, and K. Watanabe, “A digital hygrometer,” IEEE Transactions on Instrumentation and Measurement, vol. 37, no. 2, pp. 300–304, 1988.
[15]  D. Watters, P. Jayaweera, A. Bahr et al., “Wireless sensors for chloride-level monitoring in concrete bridge decks,” in Structural Materials Technology V: An NDT Conference, pp. 315–320, 2002.
[16]  G. P. Hammersley and M. J. Dill, “The long-term monitoring of civil engineering and building structures—developments in techniques for monitoring corrosion in reinforced and post-tensioned concrete,” Journal of Systems and Control Engineering, vol. 212, no. 3, pp. 175–188, 1998.
[17]  M. Sun, Z. Li, Q. Liu, Z. Tang, and D. Shen, “Study on thermal self-diagnostic and self-adaptive smart concrete structures,” Cement and Concrete Research, vol. 30, no. 8, pp. 1251–1253, 2000.
[18]  R. Jedermann, C. Behrens, D. Westphal, and W. Lang, “Applying autonomous sensor systems in logistics: combining sensor networks, RFIDs and software agents,” Sensors and Actuators A, vol. 132, no. 1, pp. 370–375, 2006.
[19]  N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture and food industry—recent development and future perspective,” Computers and Electronics in Agriculture, vol. 50, no. 1, pp. 1–14, 2006.
[20]  J. Ong, Z. You, J. Mills-Beale, E. L. Tan, B. D. Pereles, and K. G. Ong, “A wireless, passive embedded sensor for real-time monitoring of water content in civil engineering materials,” IEEE Sensors Journal, vol. 8, pp. 2053–2058, 2008.
[21]  C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, New York, NY, USA, 1989.
[22]  A. S. Mujumar, Handbook of Industrial Drying, CRC Press, New York, NY, USA, 3rd edition, 1987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133