全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics

DOI: 10.1155/2013/910961

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the last few years, the number of projects studying the human hand from the robotic point of view has increased rapidly, due to the growing interest in academic and industrial applications. Nevertheless, the complexity of the human hand given its large number of degrees of freedom (DoF) within a significantly reduced space requires an exhaustive analysis, before proposing any applications. The aim of this paper is to provide a complete summary of the kinematic and dynamic characteristics of the human hand as a preliminary step towards the development of hand devices such as prosthetic/robotic hands and exoskeletons imitating the human hand shape and functionality. A collection of data and constraints relevant to hand movements is presented, and the direct and inverse kinematics are solved for all the fingers as well as the dynamics; anthropometric data and dynamics equations allow performing simulations to understand the behavior of the finger. 1. Introduction The human hand is a complex mechanism; it has a wide range of DoFs, allowing a great variety of movements. In recent years, as robotics has advanced, significant efforts have been devoted to the development of hand devices. The two main related application fields are prosthetic/robotic hands and exoskeletons. On one side, robotic hands are developed with the characteristics complying to those of the human hand, taking advantage of its variety of movements, thereby avoiding the use of a large number of end effectors when performing tasks with different objects (e.g., Eurobot [1], Robonaut [2]). On the other side, exoskeletons are designed to fit onto the human hand, aiming at enhancing performance in the carrying out of daily activities (e.g., improving astronauts’ hand performance during extravehicular activity [3]) or supporting the rehabilitation stage of hand injury recovery. There are currently many different projects underway. Schabowsky et al. [4] introduced a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR), which was designed to provide a full range of motion for all fingers. NASA and General Motors presented a prototype of the Human Grasp Assist device [5] (K-Glove). Worsnopp et al. [6] introduced a finger exoskeleton for hand rehabilitation following strokes, to facilitate movement, especially pinch. Another project is being developed by Ho et al. [7]: their exoskeleton hand is EMG driven, again for rehabilitation, but working on all the fingers. All of these projects present a different number of DoFs and different structures, but in general they are developed with the

References

[1]  “Eurobot Ground Prototype,” http://www.esa.int/esaHS/SEM9NCZGRMG_research_0.html.
[2]  “What is a Robonaut?” http://robonaut.jsc.nasa.gov/default.asp.
[3]  N. C. Jordan, J. H. Saleh, and D. J. Newman, “The extravehicular mobility unit: a review of environment, requirements, and design changes in the US spacesuit,” Acta Astronautica, vol. 59, no. 12, pp. 1135–1145, 2006.
[4]  C. N. Schabowsky, S. B. Godfrey, R. J. Holley, and P. S. Lum, “Development and pilot testing of HEXORR: Hand exoskeleton rehabilitation robot,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 36, 2010.
[5]  http://www.nasa.gov/mission_pages/station/main/robo-glove.html.
[6]  T. T. Worsnopp, M. A. Peshkin, J. E. Colgate, and D. G. Kamper, “An actuated finger exoskeleton for hand rehabilitation following stroke,” in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics (ICORR '07), pp. 896–901, Noordwijk, The Netherlands, June 2007.
[7]  N. S. K. Ho, K. Y. Tong, X. L. Hu et al., “An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation,” in Proceedings of the IEEE International Conference on Rehabilitation Robotics (Rehab Week Zurich), ETH Zurich Science City, Switzerland, July 2011.
[8]  P. Cerveri, N. Lopomo, A. Pedotti, and G. Ferrigno, “Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: methods and reliability results,” Annals of Biomedical Engineering, vol. 33, no. 3, pp. 402–412, 2005.
[9]  J. W. Garrett, “Anthropometry of the hands of male air force flight personnel,” Tech. Rep., Aerospace Medical Research Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, USA, 1970.
[10]  J. W. Garrett, “Anthropometry of the hands of female air force flight personnel,” Tech. Rep., Aerospace Medical Research Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, USA, 1970.
[11]  S. R. Habib and N. N. Kamal, “Stature estimation from hand and phalanges lengths of Egyptians,” Journal of Forensic and Legal Medicine, vol. 17, no. 3, pp. 156–160, 2010.
[12]  O. P. Jasuja and G. Singh, “Estimation of stature from hand and phalange length,” Journal of Indian Academy of Forensic Medicine, vol. 26, no. 3, pp. 100–106, 2004.
[13]  S. Cobos, M. Ferre, M. A. Sanchéz-Urán, J. Ortego, and C. Pe?a, “Efficient human hand kinematics for manipulation tasks,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '08), pp. 2246–2251, Acropolis Convention Center, Nice, France, September 2008.
[14]  S. Cobos, M. Ferre, M. Sanchez, and J. Ortego, “Constraints for realistic hand manipulation,” in Proceedings of the 10th Annual International Workshop on Presence (PRESENCE '07), pp. 369–370, Barcelona, Spain, October 2007.
[15]  H. Rijpkema and M. Girard, “Computer animation of knowledge-based human grasping,” in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '91), pp. 339–348, 1991.
[16]  J. J. Craig, Introduction to Robotics, Mechanics and Control, Pearson Education International, 3rd edition, 1986.
[17]  T. E. Milner and D. W. Franklin, “Characterization of multijoint finger stiffness: dependence on finger posture and force direction,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 11, pp. 1363–1375, 1998.
[18]  C. J. Hasser, Force-Reflecting Anthropomorphic Hand Masters, Armstrong Lab, Crew Systems Directorate, Wright-Patterson Air Force Base, Ohio, USA, 1995.
[19]  A. D. Deshpande, N. Gialias, and Y. Matsuoka, “Contributions of intrinsic visco-elastic torques during planar index finger and wrist movements,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 2, pp. 586–594, 2012.
[20]  A. Z. Hajian and R. D. Howe, “Identification of the mechanical impedance at the human finger tip,” Journal of Biomechanical Engineering, vol. 119, no. 1, pp. 109–114, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133