Energy is considered as a key source for the future and plays a pivotal role in its socioeconomic development by raising the standard of living and the quality of life, not only for India but also for the world. In view of the scarce fossil fuel reserves, solar energy is one of the important sources of renewable energy used in India because of the suitable climate conditions. It receives about 5485.17?Wh/m2 day of solar insolation with an annual total of about 19, 74, 661.2?Wh/m2. Except for the monsoon months, solar radiation incidence is very encouraging, from the application point of view. For the efficient functioning and better performance of solar energy device, the information of solar radiation and its components at particular location is very essential for designing the solar energy devices. Therefore, over the years, several empirical correlations have been developed in order to estimate the more appropriate solar radiation in India as well as around the world. Here we present a review of different solar radiation models which predict global solar radiation and discussed the long-term plan to meet future energy demand with renewable energy due to economy growth. 1. Introduction The growing demand in urban and rural areas for energy has necessitated the finding of alternative sources of energy. With the change in the rural scenario and agricultural practices, and the advent of gadgets like televisions, mobile phones, and computers, the demand of energy has increased by a multitude. In India, commercial energy consumption makes up about 65% of the total energy consumption. This includes coal with the largest share of 55%, followed by oil at 31%, natural gas at 11%, and hydroenergy at 3%. Noncommercial energy sources (like firewood, cow dung, agricultural wastes, etc.) make 30% over the total energy consumption [1]. Being a tropical country India has unlimited potential for producing renewable energy resources. During the past 25 years, there has a significant growth of the renewable energy technology, and today it considered by many countries as an important technology for the future. Many countries have already established or are in the process of establishing support programs to encourage the adoption of this new technology. The Government of India has also given a major fillip to the adoption of renewable energy by launching the JNNSM (Jawaharlal Nehru National Solar Mission), as one of the eight national missions on climate change, in November 2009. This mission aims to establish India as a global leader in solar energy, by creating the
References
[1]
S. Singh and U. Bajpai, “Integrated energy planning for sustainable development in rural-areas: a case study from Eastern Uttar Pradesh,” International Journal of Energy and Environmental, vol. 1, pp. 1083–1096, 2010.
[2]
G. López, F. J. Batlles, and J. Tovar-Pescador, “A new simple parameterization of daily clear-sky global solar radiation including horizon effects,” Energy Conversion and Management, vol. 48, no. 1, pp. 226–233, 2007.
[3]
M. J. Ahmad and G. N. Tiwari, “Solar radiation models—a review,” International Journal of Energy Research, vol. 35, no. 4, pp. 271–290, 2011.
[4]
T. Muneer, S. Younes, and S. Munawwar, “Discourses on solar radiation modeling,” Renewable and Sustainable Energy Reviews, vol. 11, no. 4, pp. 551–602, 2007.
[5]
S. Safi, A. Zeroual, and M. Hassani, “Prediction of global daily solar radiation using higher order statistics,” Renewable Energy, vol. 27, no. 4, pp. 647–666, 2002.
[6]
M. Donatelli, G. Bellocchi, and F. Fontana, “RadEst3.00: software to estimate daily radiation data from commonly available meteorological variables,” European Journal of Agronomy, vol. 18, no. 3-4, pp. 363–367, 2003.
[7]
S. Younes and T. Muneer, “Improvements in solar radiation models based on cloud data,” Building Services Engineering Research and Technology, vol. 27, no. 1, pp. 41–54, 2006.
[8]
A. Angstrom, “Solar and terrestrial radiation,” Quarterly Journal of the Royal Meteorological Society, vol. 50, no. 210, pp. 121–126, 1924.
[9]
J. K. Page, “The estimation of monthly mean values of daily total short wave radiation on-vertical and inclined surfaces from sun shine records for latitudes 400?N–400?S,” in Proceedings of the United Nations Conference on New Sources of Energy, vol. 98, no. 4, pp. 378–390, 1961.
[10]
J. A. Prescott, “Evaporation from water surface in relation to solar radiation,” Transactions of the Royal Society of South Australia, vol. 64, pp. 114–118, 1940.
[11]
S. A. Klein, “Calculation of monthly average insolation on tilted surfaces,” Solar Energy, vol. 19, no. 4, pp. 325–329, 1977.
[12]
P. I. Cooper, “The absorption of radiation in solar stills,” Solar Energy, vol. 12, no. 3, pp. 333–346, 1969.
[13]
A. Khogali, M. R. I. Ramadan, Z. E. H. Ali, and Y. A. Fattah, “Global and diffuse solar irradiance in Yemen (Y.A.R.),” Solar Energy, vol. 31, no. 1, pp. 55–62, 1983.
[14]
R. B. Benson, M. V. Paris, J. E. Sherry, and C. G. Justus, “Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurements,” Solar Energy, vol. 32, no. 4, pp. 523–535, 1984.
[15]
H. P. Garg and S. N. Garg, “Correlation of monthly-average daily global, diffuse and beam radiation with bright sunshine hours,” Energy Conversion and Management, vol. 25, no. 4, pp. 409–417, 1985.
[16]
V. Bahel, R. Srinivasan, and H. Bakhsh, “Solar radiation for Dhahran, Saudi Arabia,” Energy, vol. 11, no. 10, pp. 985–989, 1986.
[17]
P. C. Jain, “Global irradiation estimation for Italian locations,” Solar and Wind Technology, vol. 3, no. 4, pp. 323–328, 1986.
[18]
M. A. Alsaad, “Characteristic distribution of global solar radiation for Amman, Jordan,” Solar and Wind Technology, vol. 7, no. 2-3, pp. 261–266, 1990.
[19]
S. Jain and P. C. Jain, “A comparison of the Angstrom-type correlations and the estimation of monthly average daily global irradiation,” Solar Energy, vol. 40, no. 2, pp. 93–98, 1988.
[20]
P. V. C. Luhanga and J. Andringa, “Characteristics of solar radiation at Sebele, Gaborone, Botswana,” Solar Energy, vol. 44, no. 2, pp. 77–81, 1990.
[21]
I. A. Raja and J. W. Twidell, “Distribution of global insolation over Pakistan,” Solar Energy, vol. 44, no. 2, pp. 63–71, 1990.
[22]
I. A. Raja and J. W. Twidell, “Diurnal variation of global insolation over five locations in Pakistan,” Solar Energy, vol. 44, no. 2, pp. 73–76, 1990.
[23]
P. C. Jain, “A model for diffuse and global irradiation on horizontal surfaces,” Solar Energy, vol. 45, no. 5, pp. 301–308, 1990.
[24]
A. Louche, G. Notton, P. Poggi, and G. Simonnot, “Correlations for direct normal and global horizontal irradiation on a French Mediterranean site,” Solar Energy, vol. 46, no. 4, pp. 261–266, 1991.
[25]
G. Lewis, “An empirical relation for estimating global irradiation for Tennessee, U.S.A.,” Energy Conversion and Management, vol. 33, no. 12, pp. 1097–1099, 1992.
[26]
K. K. Gopinathan and A. Soler, “A sunshine dependent global insolation model for latitudes between 60°N and 70°N,” Renewable Energy, vol. 2, no. 4-5, pp. 401–404, 1992.
[27]
P. K. Veeran and S. Kumar, “Analysis of monthly average daily global radiation and monthly average sunshine duration at two tropical locations,” Renewable Energy, vol. 3, no. 8, pp. 935–939, 1993.
[28]
M. Tiris, C. Tiris, and I. E. Ture, “Correlations of monthly-average daily global, diffuse and beam radiations with hours of bright sunshine in Gebze, Turkey,” Energy Conversion and Management, vol. 37, no. 9, pp. 1417–1421, 1996.
[29]
R. Said, M. Mansor, and T. Abuain, “Estimation of global and diffuse radiation at Tripoli,” Renewable Energy, vol. 14, no. 1–4, pp. 221–227, 1998.
[30]
K. Ulgen and N. Ozbalta, “Measured and estimated global radiation on horizontal surface for Bornova, Izmir,” in Proceedings of the 12th National Thermal Science and Technical Congress, pp. 113–118, Izmir, Turkey, 2000.
[31]
M. Chegaar and A. Chibani, “Global solar radiation estimation in Algeria,” Energy Conversion and Management, vol. 42, no. 8, pp. 967–973, 2001.
[32]
I. T. To?rul and H. To?rul, “Global solar radiation over Turkey: comparison of predicted and measured data,” Renewable Energy, vol. 25, no. 1, pp. 55–67, 2002.
[33]
K. Ulgen and A. Hepbasli, “Solar radiation models. Part 2: comparison and developing new models,” Energy Sources, vol. 26, no. 5, pp. 521–530, 2004.
[34]
F. Ahmad and I. Ulfat, “Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan,” Turkish Journal of Physics, vol. 28, no. 5, pp. 301–307, 2004.
[35]
Z. Jin, W. Yezheng, and Y. Gang, “General formula for estimation of monthly average daily global solar radiation in China,” Energy Conversion and Management, vol. 46, no. 2, pp. 257–268, 2005.
[36]
A. A. El-Sabaii and A. A. Trabea, “Estimation of global solar radiation on horizontal surfaces over Egypt,” Egyptian Journal of Solids, vol. 28, pp. 163–175, 2005.
[37]
H. Aras, O. Balli, and A. Hepbasli, “Global solar radiation potential, part 1: model development,” Energy Sources B, vol. 1, no. 3, pp. 303–315, 2006.
[38]
C. Rensheng, L. Shihua, K. Ersi, Y. Jianping, and J. Xibin, “Estimating daily global radiation using two types of revised models in China,” Energy Conversion and Management, vol. 47, no. 7-8, pp. 865–878, 2006.
[39]
A. K. Katiyar and C. K. Pandey, “Simple correlation for estimating the global solar radiation on horizontal surfaces in India,” Energy, vol. 35, no. 12, pp. 5043–5048, 2010.
[40]
M. R. Rietveld, “A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine,” Agricultural Meteorology, vol. 19, no. 2-3, pp. 243–252, 1978.
[41]
J. Gariepty, “Estimation of global solar radiation,” International Report, Service of meteorology, Government of Quebec, Quebec, Canada, 1980.
[42]
A. Kilic and A. Ozturk, Solar Energy, Kipas Distribution, Istanbul, Turkey, 1983.
[43]
J. J. Michalsky, “Comparison of a National Weather Service Foster sunshine recorder and the World Meteorological Organization standard for sunshine duration,” Solar Energy, vol. 48, no. 2, pp. 133–141, 1992.
[44]
H. ?gelman, A. Ecevit, and E. Tasdemiro?lu, “A new method for estimating solar radiation from bright sunshine data,” Solar Energy, vol. 33, no. 6, pp. 619–625, 1984.
[45]
V. Bahel, H. Bakhsh, and R. Srinivasan, “A correlation for estimation of global solar radiation,” Energy, vol. 12, no. 2, pp. 131–135, 1987.
[46]
B. G. Akino?lu and A. Ecevit, “A further comparison and discussion of sunshine-based models to estimate global solar radiation,” Energy, vol. 15, no. 10, pp. 865–872, 1990.
[47]
T. D. M. A. Samuel, “Estimation of global radiation for Sri Lanka,” Solar Energy, vol. 47, no. 5, pp. 333–337, 1991.
[48]
E. Ta?demiro?lu and R. Sever, “An improved correlation for estimating solar radiation from bright sunshine data for Turkey,” Energy, vol. 16, no. 6, pp. 787–790, 1991.
[49]
M. Yildiz and S. Oz, “Evaluation of the solar energy potential of Turkey,” in Proceedings of the 6th National Energy Congress, pp. 250–260, 1994.
[50]
B. Aksoy, “Estimated monthly average global radiation for Turkey and its comparison with observations,” Renewable Energy, vol. 10, no. 4, pp. 625–633, 1997.
[51]
C. Ertekin and O. Yaldiz, “Comparison of some existing models for estimating global solar radiation for Antalya (Turkey),” Energy Conversion and Management, vol. 41, no. 4, pp. 311–330, 2000.
[52]
K. Ulgen and A. Hepbasli, “Estimation of solar radiation parameters for Izmir, Turkey,” International Journal of Energy Research, vol. 26, no. 9, pp. 807–823, 2002.
[53]
S. Tarhan and A. Sari, “Model selection for global and diffuse radiation over the Central Black Sea (CBS) region of Turkey,” Energy Conversion and Management, vol. 46, no. 4, pp. 605–613, 2005.
[54]
K. Bakirchi, “Estimation of global solar radiation on horizontal surface,” Journal of Thermal Science and Technology, vol. 27, pp. 7–11, 2007.
[55]
A. K. Katiyar, V. K. Katiyar, A. Kumar, and C. K. Pandey, “Sixth order empirical relationship for estimating global solar radiation from sunshine hours,” Jour. PAS, vol. 15, pp. 156–165, 2008.
[56]
E. O. Falayi, J. O. Adepitan, and A. B. Rabiu, “Empirical models for the correlation of global solar radiation with meteorological data for Iseyin, Nigeria,” International Journal of Physical Sciences, vol. 3, no. 9, pp. 210–216, 2008.
[57]
M. A. Al-Salihi, M. M. Kadam, and J. A. Mohammed, “Estimation of global solar radiation on horizontal surface using routine meteorological measurements for different cities in Iraq,” Asian Journal of Scientific Research, vol. 3, pp. 240–248, 2010.
[58]
K. L. Bristow and G. S. Campbell, “On the relationship between incoming solar radiation and daily maximum and minimum temperature,” Agricultural and Forest Meteorology, vol. 31, no. 2, pp. 159–166, 1984.
[59]
R. G. Allen, “Self-calibrating method for estimating solar radiation from air temperature,” Journal of Hydrologic Engineering, vol. 2, no. 2, pp. 56–67, 1997.
[60]
P. J. Lunde, Solar Thermal Engineering: Space Heating and Hot Water Systems, Wiley, New York, NY, USA, 1979.
[61]
C. K. Pandey and A. K. Katiyar, “Temperature base correlation for the estimation of global solar radiation on horizontal surface,” International Journal of Energy and Environmental, vol. 1, no. 4, pp. 737–744, 2010.
[62]
C. Ertekin and O. Yaldiz, “Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey),” Renewable Energy, vol. 17, no. 1, pp. 95–102, 1999.
[63]
H. O. Menges, C. Ertekin, and M. H. Sonmete, “Evaluation of global solar radiation models for Konya, Turkey,” Energy Conversion and Management, vol. 47, no. 18-19, pp. 3149–3173, 2006.
[64]
M. H. Sonmete, C. Ertekin, H. O. Mengec, H. Hac?sefero?ullar?, and F. Evrendilek, “A comparative analysis of solar radiation models over Ankara, Turkey,” Environmental Monitoring Assesment, vol. 175, pp. 251–277, 2011.
[65]
C. Ertekin and F. Evrendilek, “Spatio-temporal modeling of global solar radiation dynamics as a function of sunshine duration for Turkey,” Agricultural and Forest Meteorology, vol. 145, no. 1-2, pp. 36–47, 2007.
[66]
F. ev Evrendilek and C. Ertekin, “Statistical modeling of spatio-temporal variability in monthly average daily solar radiation over Turkey,” Sensors, vol. 7, no. 11, pp. 2763–2778, 2007.
[67]
F. ev Evrendilek and C. Ertekin, “Assessing solar radiation models using multiple variables over Turkey,” Climate Dynamics, vol. 31, no. 2-3, pp. 131–149, 2008.
[68]
R. Dogniaux and M. Lemoine, “Classification of radiation in terms of different indices of atmospheric transparency,” in Proceedings of the International Daylighting Conference, Phoenix, Ariz, USA, February 1983.
[69]
H. F. Garg and S. N. Garg, “Global solar radiation climate of Libya,” Energy Conversion and Management, vol. 23, p. 413, 1983.
[70]
J. Glover and J. S. C. McCulloch, “The empirical relation between solar radiation and hours of sunshine,” Quarterly Journal of the Royal Meteorological Society, vol. 84, pp. 172–175, 1958.
[71]
J. E. Hay, “A revised method for determining the direct and diffuse components of the total shortwave radiation,” Atmosphere, vol. 14, pp. 278–287, 1976.
[72]
J. N. Black, “The distribution of solar radiation over the earth’s surface,” Archiv für Meteorologie, Geophysik und Bioklimatologie, vol. 7, pp. 165–189, 1956.