全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Economic Efficiency Assessment of Autonomous Wind/Diesel/Hydrogen Systems in Russia

DOI: 10.1155/2013/101972

Full-Text   Cite this paper   Add to My Lib

Abstract:

The economic efficiency of harnessing wind energy in the autonomous power systems of Russia is analyzed. Wind turbines are shown to be competitive for many considered variants (groups of consumers, placement areas, and climatic and meteorological conditions). The authors study the possibility of storing energy in the form of hydrogen in the autonomous wind/diesel/hydrogen power systems that include wind turbines, diesel generator, electrolyzer, hydrogen tank, and fuel cells. The paper presents the zones of economic efficiency of the system (set of parameters that provide its competitiveness) depending on load, fuel price, and long-term average annual wind speed. At low wind speed and low price of fuel, it is reasonable to use only diesel generator to supply power to consumers. When the fuel price and wind speed increase, first it becomes more economical to use a wind-diesel system and then wind turbines with a hydrogen system. In the latter case, according to the optimization results, diesel generator is excluded from the system. 1. Introduction In the recent years, the energy policy of many countries has been aimed at increasing the share of renewable energy sources (RES) in the total energy production. In Russia, the share of RES (without large hydropower plants) in the electricity production does not exceed 1%. However, the “Energy Strategy of Russia for the period up to 2030” (approved by the Russian Government) suggests that, in 20 years, this share may increase up to 4.5%. Providing a substantial environmental effect (decrease in the emissions from energy sector), RES can often be economically efficient and competitive with the energy sources based on fossil fuel [1–7]. It is expected that, in the nearest and, moreover, distant future, the role of RES in Russian and world energy industry will essentially increase due to the improvement of characteristics and a projected rise in the fossil fuel price [8–12]. It is reasonable to use RES primarily in small autonomous (decentralized) power systems located in remote hard-to-reach areas, where the price of imported fossil fuel is very high. Russian zones of decentralized power supply that do not have any modern electrical networks and large energy sources occupy about 70% of the country and are situated mostly in the Far North. The Far North is represented by a number of regions in the European part of the country (Murmansk and Arkhangelsk regions, the Republic of Karelia, and the Republic of Komi), Siberia (the north of Tyumen Region and Krasnoyarsk Territory), and the Far East (Yakutia, Chukotka,

References

[1]  O. V. Marchenko and S. V. Solomin, “Efficiency of wind energy utilization for electricity and heat supply in northern regions of Russia,” Renewable Energy, vol. 29, no. 11, pp. 1793–1809, 2004.
[2]  O. V. Marchenko and S. V. Solomin, “Assessment of the economic and environmental efficiency of solar heat supply in Russia,” Thermal Engineering, vol. 48, no. 11, pp. 928–931, 2001.
[3]  O. V. Marchenko and S. V. Solomin, “The analysis of hydrogen production efficiency with application of wind turbines and its use in autonomous energy system,” International Scientific Journal for Alternative Energy and Ecology, vol. 3, no. 47, pp. 112–118, 2007.
[4]  O. V. Marchenko and S. V. Solomin, “The analysis of economic effectiveness of renewable energy sources in dezentralized energy systems,” International Scientific Journal for Alternative Energy and Ecology, vol. 5, no. 73, pp. 78–84, 2009.
[5]  O. V. Marchenko and S. V. Solomin, “The investigation of economic efficiency of wind turbines in dezentralized energy systems,” International Scientific Journal for Alternative Energy and Ecology, vol. 1, no. 81, pp. 126–131, 2010.
[6]  O. V. Marchenko, “Mathematical modeling and economic efficiency assessment of autonomous energy system with production and storage of secondary energy carriers,” International Journal of Low-Carbon Technologies, vol. 5, no. 4, pp. 250–255, 2010.
[7]  O. V. Marchenko, “Mathematical model of energy system with renewable energy sources,” Izvestia RAN. Energetika, no. 3, pp. 154–161, 2006 (Russian).
[8]  L. S. Belyaev, S. P. Filippov, O. V. Marchenko, et al., World Energy and Transition to Sustainable Development, Kluwer Academic Publishers, London, UK, 2002.
[9]  L. S. Belyaev, O. V. Marchenko, and S. V. Solomin, “Study of long-term trends in the development of renewable energy sources,” Perspectives in Energy, vol. 11, no. 1, pp. 9–17, 2007.
[10]  O. V. Marchenko and S. V. Solomin, “System studies for analyzing the efficiency of renewable energy sources,” Thermal Engineering, vol. 57, no. 11, pp. 919–924, 2010.
[11]  L. S. Belyaev, O. V. Marchenko, and S. V. Solomin, “A study of wind energy contribution to global climate change mitigation,” International Journal of Energy Technology and Policy, vol. 3, no. 4, pp. 324–341, 2005.
[12]  L. S. Belyaev, O. V. Marchenko, S. P. Filippov, and S. V. Solomin, “Studies on competitiveness of space and terrestrial solar power plants using global energy model,” International Journal of Global Energy Issues, vol. 25, no. 1-2, pp. 94–108, 2006.
[13]  Global Wind Report, Annual Market update 2011, Global Wind Energy Council, Brussels, Belgium, 2012.
[14]  World Wind Energy Report 2010, WWEA, Bonn, Germany, 2010.
[15]  O. V. Marchenko, “Mathematical modelling of electricity market with renewable energy sources,” Renewable Energy, vol. 32, no. 6, pp. 976–990, 2007.
[16]  O. V. Marchenko, “Modeling of a green certificate market,” Renewable Energy, vol. 33, no. 8, pp. 1953–1958, 2008.
[17]  S. Thomas and F. Lomax, Low-Cost Hydrogen Distributed Production Systems, 2006 DOE Hydrogen Program Review, H2Gen Innovations, 2006.
[18]  D. Rastler, Status, Trends and Market Forecast for Stationary Fuel Cell, EPRI, Ohio, USA, 2005.
[19]  K.-A. Adamson, Fuel Cell Today Market Survey: Large Stationary Applications, London, UK, 2006.
[20]  J. Cotrell, W. Pratt, et al., “Modeling the feasibility of using fuel cells and hydrogen internal combustion engines in remote renewable energy systems,” NREL/TP 500-34648, Golden, 2003.
[21]  M. Beccali, S. Brunone, M. Cellura, and V. Franzitta, “Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings,” Renewable Energy, vol. 33, no. 3, pp. 366–382, 2008.
[22]  R. S. Garcia and D. Weisser, “A wind-diesel system with hydrogen storage: joint optimisation of design and dispatch,” Renewable Energy, vol. 31, no. 14, pp. 2296–2320, 2006.
[23]  D. B. Nelson, M. H. Nehrir, and C. Wang, “Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems,” Renewable Energy, vol. 31, no. 10, pp. 1641–1656, 2006.
[24]  B. E. Türkay and A. Y. Telli, “Economic analysis of stand alone and grid connected hybrid energy systems,” Renewable Energy, vol. 36, no. 7, pp. 1931–1943, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133