Multiple guidelines and definitions of physical activity (PA) have been used to study the benefits of activity during pregnancy. The different guidelines lead to a wide range of prevalence estimates and this has led to conflicting reports about activity patterns during pregnancy. A longitudinal study was conducted to assess PA using a pattern-recognition monitor for a 7-day period at week 18 ( ) and week 35 ( ) of pregnancy. The amount of activity performed and the number of women meeting six different PA guidelines were evaluated. Adherence to PA guidelines ranged from 5 to 100% and 9 to 100% at weeks 18 and 35, respectively. All women achieved the 500 MET-minute guideline and nearly all women accumulated ≥150 minutes of weekly moderate-vigorous physical activity (MVPA) at both time points. Only 22% and 26% participated in ≥3 sessions of MVPA lasting ≥30 minutes at both time points and this further declined to 5% and 9% when the guideline was increased to ≥5 sessions of 30 minutes. The amount of PA during pregnancy varied drastically depending on which guideline was used. Further research is warranted to clearly identify the patterns of activity that are associated with healthy pregnancy outcomes. 1. Introduction Views on physical activity and exercise during pregnancy have taken on new meanings and implications throughout history. The importance of maternal physical activity dates as far back as the third century BC when Aristotle eluded to the difficulty endured during childbirth as a result of a sedentary maternal lifestyle [1]. However, society and expert opinions have not always supported the prenatal exercise since that time. For many years maternal, exercise was thought to harm the fetus or promote adverse pregnancy outcomes such as preterm delivery and fetal growth restriction or small for gestational age infants [2, 3]. In 1985, the American College of Obstetricians and Gynecologists (ACOG) published the first exercise guidelines for pregnant women. These included limitations on heart rate and duration, restricting heart rate to 140 beats per minute, and exercise to no more than 15 minutes at a time [4]. Furthermore, women that were inactive prior to pregnancy were not advised to begin an exercise program while pregnant. Considerable evidence was published regarding the safety of maternal exercise between the 1980s and early 1990s supporting the need for updated and revised exercise guidelines [3, 5, 6]. Consequently, ACOG responded in 1994 by eliminating the constraints on heart rate and exercise duration, stating that exercise can be done in
References
[1]
K. Vaughan, Exercises before Childbirth, Faber & Faber, London, UK, 1951.
[2]
American College of Obstetrics and Gynecology (ACOG), “Committee opinion number 267: exercise during pregnancy and the postpartum period,” Obstetrics and Gynecology, vol. 99, no. 1, pp. 171–173, 2002.
[3]
G. A. L. Davies, L. A. Wolfe, M. F. Mottola, and C. MacKinnon, “Joint SOGC/CSEP clinical practice guideline: exercise in pregnancy and the postpartum period,” Canadian Journal of Applied Physiology, vol. 28, no. 3, pp. 330–341, 2003.
[4]
American College of Obstetrics and Gynecology (ACOG), Technical Bulletin: Exercise During Pregnancy and the Postnatal Period, ACOG, Washington, DC, USA, 1985.
[5]
R. G. McMurray, M. F. Mottola, L. A. Wolfe, R. Artal, L. Millar, and J. M. Pivarnik, “Recent advances in understanding maternal and fetal responses to exercise,” Medicine and Science in Sports and Exercise, vol. 25, no. 12, pp. 1305–1321, 1993.
[6]
L. A. Wolfe and G. A. L. Davies, “Canadian guidelines for exercise in pregnancy,” Clinical Obstetrics and Gynecology, vol. 46, no. 2, pp. 488–495, 2003.
[7]
American College of Obstetrics and Gynecology (ACOG), “ACOG Technical Bulletin Number 189: exercise during pregnancy and the postpartum period,” International Journal of Gynaecology and Obstetrics, vol. 45, no. 1, pp. 65–70, 1994.
[8]
U.S. Department of Health and Human Services, “2008 Physical Activity Guidelines for Americans,” ODPHP Publication UOO36, U.S. Department of Health and Human Services, Washington, DC, USA, 2008, http://www.health.gov/PAGuidelines/.
[9]
W. L. Haskell, I. M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association,” Circulation, vol. 116, no. 9, pp. 1081–1093, 2007.
[10]
Canadian Society for Exercise Physiology, “Canadian Physical Activity Guidelines: 2011 Scientific Statements,” http://www.csep.ca/CMFiles/Guidelines/CanadianPhysicalActivityGuidelinesStatements_E%203.pdf.
[11]
C. McParlin, S. C. Robson, P. W. G. Tennant et al., “Objectively measured physical activity during pregnancy: a study in obese and overweight women,” BMC Pregnancy and Childbirth, vol. 10, article 76, 2010.
[12]
N. Chandonnet, D. Saey, N. Alméras, and I. Marc, “French Pregnancy Physical Activity Questionnaire compared with an accelerometer cut point to classify physical activity among pregnant obese women,” PLoS One, vol. 7, no. 6, Article ID e38818, 2012.
[13]
K. M. Borodulin, K. R. Evenson, F. Wen, A. H. Herring, and A. M. Benson, “Physical activity patterns during pregnancy,” Medicine and Science in Sports and Exercise, vol. 40, no. 11, pp. 1901–1908, 2008.
[14]
K. M. Smith, R. C. Foster, and C. G. Campbell, “Accuracy of physical activity assessment during pregnancy: an observational study,” BMC Pregnancy Childbirth, vol. 11, Article ID 86, 2011.
[15]
K. R. Evenson, D. A. Savitz, and S. L. Huston, “Leisure-time physical activity among pregnant women in the US,” Paediatric and Perinatal Epidemiology, vol. 18, no. 6, pp. 400–407, 2004.
[16]
J. Zhang and D. A. Savitz, “Exercise during pregnancy among US women,” Annals of Epidemiology, vol. 6, no. 1, pp. 53–59, 1996.
[17]
K. R. Evenson and F. Wen, “National trends in self-reported physical activity and sedentary behaviors among pregnant women: NHANES 1999–2006,” Preventive Medicine, vol. 50, no. 3, pp. 123–128, 2010.
[18]
T. R. Cohen, H. Plourde, and K. G. Koski, “Are Canadian women achieving a fit pregnancy? A pilot study,” Canadian Journal of Public Health, vol. 101, no. 1, pp. 87–91, 2010.
[19]
M. A. Pereira, S. L. Rifas-Shiman, K. P. Kleinman, J. W. Rich-Edwards, K. E. Peterson, and M. W. Gillman, “Predictors of change in physical activity during and after pregnancy. Project viva,” American Journal of Preventive Medicine, vol. 32, no. 4, pp. 312–319, 2007.
[20]
A. M. Petersen, T. L. Leet, and R. C. Brownson, “Correlates of physical activity among pregnant women in the United States,” Medicine and Science in Sports and Exercise, vol. 37, no. 10, pp. 1748–1753, 2005.
[21]
K. M. Smith, L. M. Lanningham-Foster, G. J. Welk, and C. G. Campbell, “Validation of the SenseWear armband to predict energy expenditure in pregnant women,” Medicine and Science in Sports and Exercise, vol. 44, no. 10, pp. 2001–2008, 2012.
[22]
B. E. Ainsworth, W. L. Haskell, S. D. Herrmann et al., “2011 compendium of physical activities: a second update of codes and MET values,” Medicine and Science in Sports and Exercise, vol. 43, no. 8, pp. 1575–1581, 2011.
[23]
A. D. Stein, J. M. Rivera, and J. M. Pivarnik, “Measuring energy expenditure in habitually active and sedentary pregnant women,” Medicine and Science in Sports and Exercise, vol. 35, no. 8, pp. 1441–1446, 2003.
[24]
American College of Sports Medicine, “Exercise prescription for healthy populations and special considerations,” in Guidelines for Exercise Testing and Prescription, W. R. Thompson, Ed., pp. 183–187, Wolters Kluwer, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 8th edition, 2010.
[25]
R. P. Troiano, D. Berrigan, K. W. Dodd, L. C. Masse, T. Tilert, and M. Mcdowell, “Physical activity in the United States measured by accelerometer,” Medicine and Science in Sports and Exercise, vol. 40, no. 1, pp. 181–188, 2008.
[26]
J. M. Tucker, G. J. Welk, and N. K. Beyler, “Physical activity in U.S. adults: compliance with the physical activity guidelines for Americans,” American Journal of Preventive Medicine, vol. 40, no. 4, pp. 454–461, 2011.
[27]
R. R. Pate, M. Pratt, S. N. Blair et al., “Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine,” Journal of the American Medical Association, vol. 273, no. 5, pp. 402–407, 1995.
[28]
B. Muktabhant, P. Lumbiganon, C. Ngamjarus, and T. Dowswell, “Interventions for preventing excessive weight gain during pregnancy,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD007145, 2012.
[29]
B. Gardner, J. Wardle, L. Poston, and H. Croker, “Changing diet and physical activity to reduce gestational weight gain: a meta-analysis,” Obesity Reviews, vol. 12, no. 7, pp. e602–e620, 2011.
[30]
H. Skouteris, L. Hartley-Clark, M. McCabe et al., “Preventing excessive gestational weight gain: a systematic review of interventions,” Obesity Reviews, vol. 11, no. 11, pp. 757–768, 2010.
[31]
I. Streuling, A. Beyerlein, E. Rosenfeld, H. Hofmann, T. Schulz, and R. von Kries, “Physical activity and gestational weight gain: a meta-analysis of intervention trials,” An International Journal of Obstetrics and Gynaecology, vol. 118, no. 3, pp. 278–284, 2011.
[32]
S. Thangaratinam, E. Rogozinska, K. Jolly, et al., “Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence,” British Medical Journal, vol. 344, Article ID e2088, 2012.
[33]
D. K. Tobias, C. Zhang, R. M. van Dam, K. Bowers, and F. B. Hu, “Physical activity before and during pregnancy and risk of gestational diabetes mellitus: a meta-analysis,” Diabetes Care, vol. 34, no. 1, pp. 223–229, 2011.
[34]
American College of Sports Medicine, “Impact of physical activity during pregnancy and postpartum on chronic disease risk: roundtable consensus statement,” Medicine and Science in Sports and Exercise, vol. 38, no. 5, pp. 989–1006, 2006.
[35]
G. J. Welk, Physical Activity Assessments for Health-Related Research, Human Kinetics Books, Champaign, Ill, USA, 2002.
[36]
K. R. Evenson and F. Wen, “Prevalence and correlates of objectively measured physical activity and sedentary behavior among US pregnant women,” Preventive Medicine, vol. 53, no. 1-2, pp. 39–43, 2011.