全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Growth Kinetics of Monodisperse Polystyrene Microspheres Prepared by Dispersion Polymerization

DOI: 10.1155/2013/754687

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dispersion polymerization has been widely applied to the synthesis of monodisperse micron-sized polymer colloidal spheres. Many efforts have been devoted to studying the influence of initial conditions on the size and uniformity of the resultant microspheres, aiming to synthesize micron-size monodisperse colloidal spheres. However, the inner contradiction between the size and the size distribution of colloidal spheres hinders the realization of this goal. In this work, we drew our attention from the initial conditions to the growth stage of dispersion polymerization. We tracked the size evolution of colloidal sphere during the dispersion polymerization, through which we established a kinetic model that described the relationship between the monomer concentration and the reaction time. The model may provide a guideline to prepare large polymer colloidal spheres with good monodispersity by continuous monomer feeding during the growth stage to maintain the concentration of monomer at a constant value in a dispersion polymerization process. 1. Introduction As a new functional macromolecule material, monodisperse polymer microspheres have many applications in environmental conservation, biomedicine, colloid science, electronic information material, and many other areas [1–3] due to their superiority of good sphericity, size tunability, large specific surface area, and excellent absorbability [4–6]. Particularly, monodisperse micron-sized spheres are ideal materials as advanced coatings [7], fillers of chromatographic column [8, 9], standard particles of electron microscope and Coulter particle size testers, and spacers in LCD [10], which has drawn increasing interest to synthesize monodisperse micron-sized spheres [11, 12]. The first report on monodisperse polymer colloidal spheres was the polystyrene spheres prepared by Vanderhoff and Brandford [13]. So far, many synthesis strategies have been developed such as emulsion polymerization, suspension polymerization, dispersion polymerization, and seed swelling polymerization. In view of the demand of micron size and monodispersity, the former two methods are excluded because they cannot meet the two requirements at the same time. Emulsion polymerization can only gain monodisperse colloidal spheres with the size below 1?μm. Suspension polymerization may achieve large microspheres with size ranging from 10?μm to 100?μm while the microspheres possess a bad monodispersity [14]. The latter two methods are suitable for the synthesis of uniform colloidal spheres with micron size. Seed swelling polymerization,

References

[1]  S. K. Mi, H. L. Gyu, H. Jae-Min, and L. Hyunjung, “Synthesis of monodisperse PS-co-PDMS microspheres by dispersion polymerization,” Materials Science and Engineering, vol. 27, no. 5–8, pp. 1247–1251, 2007.
[2]  S. O. Kyoung, B. won, and K. Hwayoung, “Dispersion polymerization of N-vinylcarbazole using siloxane-based and fluorine-based surfactants in compressed liquid dimethyl ether,” Polymer, vol. 48, no. 6, pp. 1450–1454, 2007.
[3]  I. Miraballes-Martínez and J. Forcada, “Synthesis of latex particles with surface amino groups,” Journal of Polymer Science A, vol. 38, pp. 4230–4237, 2000.
[4]  R. P. A. Dullens, E. M. Claesson, and W. K. Kegel, “Preparation and properties of cross-linked fluorescent poly(methyl methacrylate) latex colloids,” Langmuir, vol. 20, no. 3, pp. 658–664, 2004.
[5]  H. Kawaguchi, “Functional polymer microspheres,” Progress in Polymer Science, vol. 25, no. 8, pp. 1171–1210, 2000.
[6]  R. M. Santos and J. Forcada, “Acetal-functionalized polymer particles useful for immunoassays,” Journal of Polymer Science A, vol. 35, no. 9, pp. 1605–1610, 1997.
[7]  K. Ishii, “Synthesis of microgels and their application to coatings,” Colloids and Surfaces A, vol. 153, no. 1–3, pp. 591–595, 1999.
[8]  E. Caro, R. M. Marce, P. A. G. Cormack, D. C. Sherrington, and F. Borrull, “Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water,” Journal of Chromatography A, vol. 1047, no. 2, pp. 175–180, 2004.
[9]  Y. Watebe, K. Hosoya, N. Tanaka, and T. Kubo, “Shielded molecularly imprinted polymers prepared with a selective surface modification,” Journal of Polymer Science A, vol. 43, no. 10, pp. 2048–2060, 2005.
[10]  S. Omi, M. Saito, T. Hashimoto, M. Nagai, and G.-H. Ma, “Preparation of monodisperse polystyrene spheres incorporating polyimide prepolymer by dispersion polymerization in the presence of L-ascorbic acid,” Journal of Applied Polymer Science, vol. 68, no. 6, pp. 897–907, 1998.
[11]  K. Ishizu and N. Tahara, “Microsphere synthesis by emulsion copolymerization of methyl methacrylate with poly(methacrylic acid) macromonomers,” Polymer, vol. 37, no. 13, pp. 2853–2856, 1996.
[12]  N. B. Viswanthan, P. A. Thomas, J. K. Pandit, M. G. Kulkarni, and R. A. Mashelkar, “Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique,” Journal of Controlled Release, vol. 58, no. 1, pp. 9–20, 1999.
[13]  J. W. Vanderhoff and E. B. Brandford, Polymer Colloid I, Plenum Press, New York, NY, USA, 1971.
[14]  D.-H. Lee, J.-W. Kim, and K.-D. Suh, “Monodisperse micron-sized polymethylmethacrylate particles having a crosslinked network structure. V,” Journal of Materials Science, vol. 35, no. 24, pp. 6181–6188, 2000.
[15]  M. Okubo, M. Shiozaki, M. Tsujihiro, and Y. Tsukuda, “Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method,” Colloid & Polymer Science, vol. 269, no. 3, pp. 222–226, 1991.
[16]  J. Ugelstad, P. C. Mork, R. Schmid, T. Ellingsen, and A. Berge, “Preparation and biochemical and biomedical applications of new monosized polymer particles,” Polymer International, vol. 30, no. 2, pp. 157–168, 1993.
[17]  C.-M. Tseng, M. S. El-Aasser, and J. W. Vanderhoff, “Optimization of polymer-solvent interaction in a multisolvent system by the unifac group-contribution method,” Journal of Applied Polymer Science, vol. 32, no. 5, pp. 5007–5019, 1986.
[18]  H. Bamnolker, B. Nitzan, T. Tennenbaum, B. BarToov, M. Hinz, and H. Seliger, “Scientific and Clinical Applications of Magnetic Carriers,” in Proceedings of the 1st International Conference on Scientific and Clinical Applications of Magnetic Carriers, pp. 37–51, Rostock, Germany, September 1996.
[19]  A. Tuncel, R. Kahraman, and E. Piskin, “Monosize polystyrene lattices carrying functional-groups on their surfaces,” Journal of Applied Polymer Science, vol. 51, pp. 1485–1498, 1994.
[20]  K. Hu, V. L. Dimonie, E. D. Sudol, and M. S. El-Aasser, “Monodisperse poly(butadiene/styrene) particles by dispersion polymerization,” Journal of Applied Polymer Science, vol. 55, no. 10, pp. 1411–1415, 1995.
[21]  B. Thomson, A. Rudin, and G. Lajoie, “Dispersion copolymerization of styrene and divinylbenzene: synthesis of monodisperse, uniformly crosslinked particles,” Journal of Polymer Science A, vol. 33, no. 3, pp. 345–347, 1995.
[22]  B. Thomson, A. Rudin, and G. Lajoie, “Dispersion copolymerization of styrene and divinylbenzene. II: effect of crosslinker on particle morphology,” Journal of Applied Polymer Science, vol. 59, no. 13, pp. 2009–2028, 1996.
[23]  M. Holderle, G. Bar, and R. Mulhaupt, “Synthesis and characterization of oxazoline-functional polymer particles by free radical nonaqueous dispersion polymerization,” Journal of Polymer Science A, vol. 35, no. 13, pp. 2539–2548.
[24]  D. Horak, F. Svec, and J. M. Frechet, “Preparation and control of surface properties of monodisperse micrometer size beads by dispersion copolymerization of styrene and butyl methacrylate in polar media,” Journal of Polymer Science A, vol. 33, no. 14, pp. 2329–2338, 1995.
[25]  J.-S. Song, F. Tronc, and M. A. Winnik, “Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles,” Journal of the American Chemical Society, vol. 126, no. 21, pp. 6562–6563, 2004.
[26]  H. Kurioka, H. Uyama, and S. Kobayashi, “Peroxidase-catalyzed dispersion polymerization of phenol derivatives,” Polymer Journal, vol. 30, no. 6, pp. 526–529, 1998.
[27]  M. Okubo, T. Yamashita, and E. Ise, “Thermodynamics for preparation of micron-sized, monodispersed, monomer-adsorbed polymer particles having snowman shape by utilizing the dynamic swelling method and the seeded polymerization,” Proceedings of the Japan Academy B, vol. 75, no. 7, pp. 195–200, 1999.
[28]  M. Okubo, Y. Konishi, M. Takebe, and H. Minami, “Preparation of micron-sized, monodispersed,anomalous polymer particles by utilizing the solvent-absorbing/releasing method,” Colloid and Polymer Science, vol. 278, no. 10, pp. 919–926, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133