Green synthesis aims to minimize the use of unsafe reactants and maximize the efficiency of synthesis process. These could be achieved by using environmentally compassionate polymers and nontoxic chemicals. Hydroxyethyl cellulose (HEC), an ecofriendly polymer, was used as both reducing and stabilizing agents in the synthesis of stable silver nanoparticles, while silver nitrate was used as a precursor and water as a solvent. The formation of silver nanoparticles was assessed by monitoring UV-vis spectra of the silver colloidal solution. The size of the nanoparticles was measured using transmission electron microscope (TEM). Reaction kinetics was followed by measuring the absorbance of silver colloidal solution at different time intervals. Optimum reaction conditions revealed that the highest absorbance was obtained using HEC?:?AgNO3 of 1.5?:?0.17 (g/100?cm3) at 70°C for 120?min at pH 12. The Ag0 nanoparticles colloidal solution so obtained (1000?ppm) were found stable in aqueous solution over a period of six months at room temperature ( °C). The sizes of these nanoparticles were found in the range of 11–60?nm after six months of storing. FTIR spectra confirmed the interaction of both the aldehyde and OH groups in the synthesis and stabilization of silver nanoparticles. 1. Introduction Nanotechnology is an enabling technology which deals with structures ranging from approximately 1 to 100?nm in at least one dimension. The nanosize results in specific physicochemical characteristics that may differ from those of the bulk substance or particles of larger size. This effect is mainly attributed to high surface area to volume ratio, which potentially results in high reactivity. Because of these specific characteristics, the use of substances in nanoform may have advantages over the use of bulk chemicals. Silver has been used since ancient times for jewelry, utensils, monetary and currency, dental alloy, photography, explosives, and so forth. Until the introduction of antibiotics, silver was also used for its antiseptic activity, specifically in the management of open wounds and burns. While an antibiotic can kill as many as a half-dozen different kinds of disease organisms, silver is known to kill 650 species of bacteria or viruses simply by coming into contact with them. Due to its antimicrobial properties, silver has also been used in medical textile applications [1–4] and incorporated in filters to purify drinking water and clean swimming pool water. Particle size has been the only limiting factor to silver’s effectiveness [5]. Ag/Al2O3 catalysts are used
References
[1]
A. I. Wasif and S. K. Laga, “Use of nano silver as an antimicrobial agent for cotton,” Autex Research Journal, vol. 9, no. 1, pp. 5–13, 2009.
[2]
D. Tessier, I. Radu, and M. Filteau, “Antimicrobial fabrics coated with nano-sized silver salt crystals,” in Proceedings of the NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech, M. Laudon and B. Romanowicz, Eds., pp. 762–764, Anaheim, Calif, USA, May 2005.
[3]
M. Gouda, “Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration,” Journal of Industrial Textiles, vol. 41, no. 3, pp. 222–240, 2012.
[4]
M. H. El-Rafie, A. A. Mohamed, T. I. Shaheen, and A. Hebeish, “Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics,” Carbohydrate Polymers, vol. 80, no. 3, pp. 779–782, 2010.
[5]
S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts et al., “Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment,” Nanotoxicology, vol. 3, no. 2, pp. 109–138, 2009.
[6]
J. P. Breen, R. Burch, C. Hardacre, and C. J. Hill, “Structural investigation of the promotional effect of hydrogen during the selective catalytic reduction of with hydrocarbons over Ag/Al2O3 catalysts,” Journal of Physical Chemistry B, vol. 109, no. 11, pp. 4805–4807, 2005.
[7]
K. Arve, F. Klingstedt, K. Er?nen et al., “Analysis of the state and size of silver on alumina in effective removal of from oxygen rieh exhaust gas,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 4, pp. 1076–1083, 2006.
[8]
A. Musi, P. Massiani, D. Brouri, J.-M. Trichard, and P. Da Costa, “On the characterisation of silver species for SCR of with ethanol,” Catalysis Letters, vol. 128, no. 1-2, pp. 25–30, 2009.
[9]
A. Henglein, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chemical Reviews, vol. 89, no. 8, pp. 1861–1873, 1989.
[10]
L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chemical Reviews, vol. 93, no. 8, pp. 2693–2730, 1993.
[11]
A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996.
[12]
N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, “A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch,” Carbohydrate Research, vol. 341, no. 12, pp. 2012–2018, 2006.
[13]
P. Dallas, V. K. Sharma, and R. Zboril, “Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives,” Advances in Colloid and Interface Science, vol. 166, no. 1-2, pp. 119–135, 2011.
[14]
P. Raveendran, J. Fu, and S. L. Wallen, “Completely “Green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003.
[15]
J. M. DeSimone, “Practical approaches to green solvents,” Science, vol. 297, no. 5582, pp. 799–803, 2002.
[16]
M. Poliakoff and P. Anastas, “A principled stance,” Nature, vol. 413, no. 6853, p. 257, 2001.
[17]
P. Vankar and D. Shukla, “Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric,” Applied Nanoscience, vol. 2, no. 2, pp. 163–168, 2012.
[18]
Z. Sadowski, “Biosynthesis and application of silver and gold nanoparticles,” in Silver Nanoparticles, D. P. Perez, Ed., pp. 257–276, In Tech, 2010.
[19]
S. Kaviya, J. Santhanalakshmi, and B. Viswanathan, “Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract,” Materials Letters, vol. 67, no. 1, pp. 64–66, 2012.
[20]
A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, 2012.
[21]
M. H. El-Rafie, T. I. Shaheen, A. A. Mohamed, and A. Hebeish, “Bio-synthesis and applications of silver nanoparticles onto cotton fabrics,” Carbohydrate Polymers, vol. 90, no. 2, pp. 915–920, 2012.
[22]
M. Z. Kassaee, A. Akhavan, N. Sheikh, and R. Beteshobabrud, “γ-Ray synthesis of starch-stabilized silver nanoparticles with antibacterial activities,” Radiation Physics and Chemistry, vol. 77, no. 9, pp. 1074–1078, 2008.
[23]
V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009.
[24]
M. Valodkar, A. Bhadoria, J. Pohnerkar, M. Mohan, and S. Thakore, “Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles,” Carbohydrate Research, vol. 345, no. 12, pp. 1767–1773, 2010.
[25]
A. Hebeish, M. E. El-Naggar, M. M. G. Fouda, M. A. Ramadan, S. S. Al-Deyab, and M. H. El-Rafie, “Highly effective antibacterial textiles containing green synthesized silver nanoparticles,” Carbohydrate Polymers, vol. 86, no. 2, pp. 936–940, 2011.
[26]
M. H. El-Rafie, M. E. El-Naggar, M. A. Ramadan, M. M. G. Fouda, S. S. Al-Deyab, and A. Hebeish, “Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization,” Carbohydrate Polymers, vol. 86, no. 2, pp. 630–635, 2011.
[27]
V. Djokovi?, R. Krsmanovi?, D. K. Bo?ani? et al., “Adsorption of sulfur onto a surface of silver nanoparticles stabilized with sago starch biopolymer,” Colloids and Surfaces B, vol. 73, no. 1, pp. 30–35, 2009.
[28]
P. Raveendran, J. Fu, and S. L. Wallen, “A simple and “green” method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles,” Green Chemistry, vol. 8, no. 1, pp. 34–38, 2006.
[29]
H. Huang, Q. Yuan, and X. Yang, “Preparation and characterization of metal-chitosan nanocomposites,” Colloids and Surfaces B, vol. 39, no. 1-2, pp. 31–37, 2004.
[30]
J. Chen, J. Wang, X. Zhang, and Y. Jin, “Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate,” Materials Chemistry and Physics, vol. 108, no. 2-3, pp. 421–424, 2008.
[31]
W. Liu, Z. Zhang, H. Liu, W. He, X. Ge, and M. Wang, “Silver nanorods using HEC as a template by γ-irradiation technique and absorption dose that changed their nanosize and morphology,” Materials Letters, vol. 61, no. 8-9, pp. 1801–1804, 2007.
[32]
A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, “Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles,” Carbohydrate Polymers, vol. 82, no. 3, pp. 933–941, 2010.
[33]
N. Singh and P. K. Khanna, “In situ synthesis of silver nano-particles in polymethylmethacrylate,” Materials Chemistry and Physics, vol. 104, no. 2-3, pp. 367–372, 2007.
[34]
D. V. Goia, “Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions,” Journal of Materials Chemistry, vol. 14, no. 4, pp. 451–458, 2004.
[35]
W. Wang, J. Wang, Y. Kang, and A. Wang, “Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone,” Composites B, vol. 42, no. 4, pp. 809–818, 2011.
[36]
J. Reuben, “Description and analysis of hydroxyethyl cellulose,” Macromolecules, vol. 17, no. 2, pp. 156–161, 1984.
[37]
J. S. Bradley, G. Schmid, D. V. Talapin, E. V. Shevchenko, and H. Weller, “Syntheses and characterizations: 3. 2 synthesis of metal nanoparticles,” in Nanoparticles From Theory to Application, pp. 185–238, Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
[38]
E. S. Abdel-Halim, M. H. El-Rafie, and S. S. Al-Deyab, “Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles,” Carbohydrate Polymers, vol. 85, no. 3, pp. 692–697, 2011.