全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Effect of Various Nanofillers on Technological Properties of NBR/NR Blend Vulcanized Using BIAT-CBS System

DOI: 10.1155/2013/798232

Full-Text   Cite this paper   Add to My Lib

Abstract:

Owing to processing ease and resistance to oils and chemicals, NBR is widely used in many industries. But since neat NBR has only poor tensile properties, it is better to use suitable blends of NR and NBR after incorporating appropriate nanoingredients before vulcanization. It is well established that nanoparticles can be easily dispersed in a more uniform pattern in polymer matrix, thereby enhancing the technological properties of the elastomer vulcanizate. Since there are no systematic comparative studies on technological properties of NBR/NR blend containing different nanoingredients, efforts have been made in this study to investigate cure and technological properties like tensile properties, tear resistance, compression set, hardness, abrasion loss and swelling value of NBR/NR (80/20) blend vulcanizates containing stearic acid-coated nano-zinc oxide (ZOS), nano-BIAT, nano-silicate-coated CaCO3, PEO-coated calcium silicate, and surface-modified carbon nanotubes (CNT). XRD and electron microscopy have been used for morphological analysis. The nano ingredients were effective in enhancing the technological properties of the vulcanizates. Among the nanofillers, modified CNT was found to impart superior properties to NBR/NR blend due to more intercalation. 1. Introduction Owing to processing ease and resistance to oils and chemicals, NBR is widely used in many industries. However, neat NBR exhibits only poor tensile properties and oil resistance. A considerable amount of research has been made over the last several years with a view to obtaining new polymeric materials with enhanced specific attributes for specific applications. Much attention is devoted to the simplest route for combining outstanding properties of different existing polymers, that is, by blending polymers. Although increasing numbers of miscible blends are reported [1–5], most polymers are almost immiscible, thus leading to heterophase polymer blends. There are two widely used types of elastomer blends: miscible single-phase blends and immiscible two-phase blends. It is scientifically proved that the presence of certain polymeric species with the right structure can result in compatibilization of an immiscible elastomer blend by virtue of their ability to change interfacial situation [6–8]. Such materials, known as compatibilizers, are added or in situ formed during blending of elastomers. The compatibilizers in elastomer blends perform many roles like reducing interfacial energy between the phases, permitting finer dispersion during mixing, providing stability against gross

References

[1]  S. Datta and D. Lohse, Polymeric Compatibilizers, Hanser, New York, NY, USA, 1996.
[2]  G. O. Shonaike and G. P. Simon, Eds., Polymer Blends and Alloys, Marcel Dekker, New York, NY, USA, 1999.
[3]  I. S. Miles and S. Rostami, Eds., Multi Component Polymer Systems, Longman Scientific and Technical, London, UK, 1992.
[4]  L. A. Utracki, Ed., Polymer Blends Handbook, vol. 1-2, Kluwer Academic, Dordrecht, The Netherlands, 2002.
[5]  A. J. Tinker, “Crosslink distribution and interfacial adhesion in vulcanized blends of NR and NBR,” Rubber Chemistry and Technology, vol. 63, no. 4, pp. 503–515, 1990.
[6]  P. Arjunan, US Patent 5352739, 1994.
[7]  M. N. Ismail, S. H. El-Sabbagh, and A. A. Yehia, “Fatigue and mechanical properties of NR/SBR and NR/NBR blend vulcanizates,” Journal of Elastomers and Plastics, vol. 31, no. 3, pp. 255–270, 1999.
[8]  A. Abdellah and L. A. Utracki, “Interphase and compatibilization of polymer blends,” Polymer Engineering and Science, vol. 36, no. 12, pp. 1574–1585, 1996.
[9]  A. J. Tinker, Blends of Natural Rubber with Speciality Synthetic Rubbers in Industrial Composites Based on Natural Rubber, Malaysian Rubber Research and Development Board, Kualampur, Malaysia, 1998.
[10]  M. A. Kader, W. D. Kim, S. Kaang, and C. Nah, “Morphology and dynamic mechanical properties of natural rubber/nitrile rubber blends containing trans-polyoctylene rubber as a compatibilizer,” Polymer International, vol. 54, no. 1, pp. 120–129, 2005.
[11]  C. Sirisinha, S. Limcharoen, and J. Thunyarittikom, “Oil resistance controlled by phase morphology in natural rubber/nitrile rubber blends,” Journal of Applied Polymer Science, vol. 87, no. 1, pp. 83–89, 2003.
[12]  A. E. Mathai, R. P. Singh, and S. Thomas, “Transport of substituted benzenes through nitrile rubber/natural rubber blend membranes,” Journal of Membrane Science, vol. 202, no. 1-2, pp. 35–54, 2002.
[13]  M. Li, Y. Li, J. Zhang, and S. Feng, “Effect of compatibilizers on the miscibility of natural rubber/silicone rubber blends,” Polymer Engineering & Science, 2013.
[14]  S. Angnanon, P. Prasassarakich, and N. Hinchiranan, “Styrene/acrylonitrile graft natural rubber as compatibilizer in rubber blends,” Polymer, vol. 50, no. 11, pp. 1170–1178, 2011.
[15]  W. G. Hwang, K. H. Wei, and C. M. Wu, “Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites,” Polymer Engineering & Science, vol. 44, no. 11, pp. 2117–2124, 2004.
[16]  H. H. Le, S. Ilisch, and H.-J. Radusch, “Characterization of the effect of the filler dispersion on the stress relaxation behavior of carbon black filled rubber composites,” Polymer, vol. 50, no. 10, pp. 2294–2303, 2009.
[17]  A. Mostafa, A. Abouel-Kasem, M. R. Bayoumi, and M. G. El-Sebaie, “Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds,” Materials and Design, vol. 30, no. 5, pp. 1561–1568, 2009.
[18]  C. Kantala, E. Wimolmala, C. Sirisinha, and N. Sombatsompop, “Reinforcement of compatibilized NR/NBR blends by fly ash particles and precipitated silica,” Polymers for Advanced Technologies, vol. 20, no. 5, pp. 448–458, 2009.
[19]  W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthesis and natural fillers a review,” Maderas. Ciencia y Tecnología, vol. 7, pp. 159–178, 2005.
[20]  M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Materials Science and Engineering R, vol. 28, no. 1-2, pp. 1–63, 2000.
[21]  K. Yoshikai, T. Oshaki, and M. Furukava, “Silica reinforcement of synthetic diene rubbers by sol-gel process in the latex,” Journal of Applied Polymer Science, vol. 85, pp. 2053–2063, 2002.
[22]  M. Nasir, B. T. Poh, and P. S. Ng, “Effect of γ-mercaptopropyltrimethoxysilane coupling agent on t90, tensile strength and tear strength of silica-filled NR, NBR and SBR vulcanizates,” European Polymer Journal, vol. 24, no. 10, pp. 961–965, 1988.
[23]  S. N. Chakravarty and A. Chakravarty, “Reinforcement of rubber compounds with nano-filler,” KGK Kautschuk Gummi Kunststoffe, vol. 60, no. 11, pp. 619–622, 2007.
[24]  A. Choudhury, A. K. Bhowmick, and C. Ong, “Effect of different nanoparticles on thermal, mechanical and dynamic mechanical properties of hydrogenated nitrile butadiene rubber nanocomposites,” Journal of Applied Polymer Science, vol. 116, no. 3, pp. 1428–1441, 2010.
[25]  P. C. Thomas, E. T. Jose, P. S. Thomas, S. Thomas, and K. Joseph, “High-performance nanocomposites based on arcylonitrile-butadiene rubber with fillers of different particle size: mechanical and morphological studies,” Polymer Composites, vol. 31, no. 9, pp. 1515–1524, 2010.
[26]  M. Moniruzzaman and K. I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules, vol. 39, no. 16, pp. 5194–5205, 2006.
[27]  A. Fakhru’l-Razi, A. A. Muataz, G. Nazlia et al., “Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber,” Composite Structures, vol. 75, no. 1–4, pp. 496–500, 2006.
[28]  G. Sui, W. H. Zhong, X. P. Yang, Y. H. Yu, and S. H. Zhao, “Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes,” Polymers for Advanced Technologies, vol. 19, no. 11, pp. 1543–1549, 2008.
[29]  N. Girun, F.-R. Ahmadun, S. A. Rashid, and M. A. Atieh, “Multi-wall carbon nanotubes/Styrene Butadiene Rubber (SBR) nanocomposite,” Fullerenes Nanotubes and Carbon Nanostructures, vol. 15, no. 3, pp. 207–214, 2007.
[30]  H. Zhao, S. Qi, W. Zhou, and N. Liu, “Progress in carbon nanotube/rubber composites,” Hecheng Xiangjiao Gongye, vol. 31, no. 4, pp. 315–318, 2008.
[31]  G. Sui, W. H. Zhong, X. P. Yang, and Y. H. Yu, “Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes,” Materials Science and Engineering A, vol. 485, no. 1-2, pp. 524–531, 2008.
[32]  H. Lorenz, J. Fritzsche, A. Das et al., “Advanced elastomer nano-composites based on CNT-hybrid filler systems,” Composites Science and Technology, vol. 69, no. 13, pp. 2135–2143, 2009.
[33]  L. Lu, Y. Zhai, Y. Zhang, C. Ong, and S. Guo, “Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber by multi-walled carbon nanotubes,” Applied Surface Science, vol. 255, no. 5, pp. 2162–2166, 2008.
[34]  A. M. Omran, A. M. Youssef, M. M. Ahmed, E. M. Abdel-Bary, and R. T. L. Hellipolis, “Mechanical and oil resistance characteristics of rubber blends based on nitrile butadiene rubber,” KGK Kautschuk Gummi Kunststoffe, vol. 63, no. 5, pp. 197–202, 2010.
[35]  P. Kueseng, P. Sae-oui, and N. Rattanasom, “Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube,” Polymer Testing, vol. 32, pp. 731–738, 2013.
[36]  F. H. Gojny, M. H. G. Wichmann, B. Fiedler et al., “Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites,” Polymer, vol. 47, no. 6, pp. 2036–2045, 2006.
[37]  Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y.-C. Chung, and H. G. Yoon, “Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites,” Carbon, vol. 43, no. 1, pp. 23–30, 2005.
[38]  Y. S. Song and J. R. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, vol. 43, no. 7, pp. 1378–1385, 2005.
[39]  P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, “Single-walled carbon nanotube-polymer composites: strength and weakness,” Advanced Materials, vol. 12, no. 10, pp. 750–753, 2000.
[40]  Li. Xu, S. Y. Wong, W. C. Tjiu, B. P. Lyons, S. A. Oh, and C. B. He, “Quantitative inhibiting effect of Group I-III cations on the growth of carbon nanotubes,” Carbon, vol. 46, no. 5, pp. 818–821, 2008.
[41]  Z. Ali, H. H. Le, S. Ilisch, T. Thurn-Albrecht, and H.-J. Radusch, “Morphology development and compatibilization effect in nanoclay filled rubber blends,” Polymer, vol. 51, no. 20, pp. 4580–4588, 2010.
[42]  A. Das, K. W. St?ckelhuber, R. Jurk et al., “Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends,” Polymer, vol. 49, no. 24, pp. 5276–5283, 2008.
[43]  D. Yue, Y. Liu, Z. Shen, and L. Zhang, “Study on preparation and properties of carbon nanotubes/rubber composites,” Journal of Materials Science, vol. 41, no. 8, pp. 2541–2544, 2006.
[44]  H. Tahermansouri, D. Chobfrosh, and M. Meskinfam, “Functionalization of Carboxylated Multi-wall Nanotubes with 1,2-phenylenediamine,” International Journal of Nano Dimension, vol. 1, pp. 153–158, 2010.
[45]  A. Tavangar, B. Tan, and K. Venkatakrishnan, “Synthesis of three-dimensional calcium carbonate nanofibrous structure from eggshell using femtosecond laser ablation,” Journal of Nanobiotechnology, vol. 9, article 1, 2011.
[46]  S. Mishra and N. G. Shimpi, “Comparison of nano CaCO3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,” Journal of Scientific & Industrial Research, vol. 64, pp. 744–751, 2005.
[47]  A. Gupta, H. S. Bhatti, D. Kumar, N. K. Verma, and R. P. Tandon, “Nano and bulk crystals of ZnO: synthesis and characterization,” Digest Journal of Nanomaterials and Biostructures, vol. 1, no. 1, pp. 1–9, 2006.
[48]  K. Khairurrijal, M. Abdullah, M. Rosi, and F. A. Noor, “Structural characteristics of carbon nanotubes fabricated using simple spray pyrolysis method,” Indonesian Journal of Physics, vol. 19, no. 3, pp. 91–95, 2008.
[49]  H. Li, C. Liu, and S. Fan, “Homogeneous carbon nanotube/carbon composites prepared by catalyzed carbonization approach at low temperature,” Journal of Nanomaterials, vol. 2011, Article ID 281490, 5 pages, 2011.
[50]  P. Zhang, X. Shi, G. Yu, and S. Zhao, “The structure change of dynamically fatigued unfilled natural rubber vulcanizates,” Journal of Applied Polymer Science, vol. 115, no. 6, pp. 3535–3541, 2010.
[51]  J. Oderkerk, G. De Schaetzen, B. Goderis, L. Hellemans, and G. Groeninckx, “Micromechanical deformation and recovery processes of nylon-6/ rubber thermoplastic vulcanizates as studied by atomic force microscopy and transmission electron microscopy,” Macromolecules, vol. 35, no. 17, pp. 6623–6629, 2002.
[52]  A. Ghosh, R. S. Rajeev, S. K. De, W. Sharp, and S. Bandyopadhyaya, “Atomic force microscopic studies on the silicone rubber-fluororubber blend containing ground rubber vulcanizate powder,” Journal of Elastomers and Plastics, vol. 38, no. 2, pp. 119–132, 2006.
[53]  A. Ghosh, R. S. Rajeev, S. K. De, W. Sharp, and S. Bandyopadhyaya, “Atomic force microscopic studies on the silicone rubber-fluororubber blend containing ground rubber vulcanizate powder,” Journal of Elastomers and Plastics, vol. 38, no. 2, pp. 119–132, 2006.
[54]  H. H. Le, Q. Zia, S. Ilisch, and H.-J. Radusch, “Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates,” Express Polymer Letters, vol. 2, no. 11, pp. 791–799, 2008.
[55]  H. Ismail, F. Ramly, and N. Othman, “Multiwall carbon nanotube-filled natural rubber: the effects of filler loading and mixing method,” Polymer, vol. 49, no. 3, pp. 260–266, 2010.
[56]  A. Usuki, Y. Kojima, M. Kawasumi et al., “Synthesis of nylon 6-clay hybrid,” Journal of Materials Research, vol. 8, no. 5, pp. 1179–1184, 1993.
[57]  J. H. Shim, E. S. Kim, J. H. Joo, and J. S. Yoon, “Properties and morphology of poly(L-lactide)/clay composites according to the clay modification,” Journal of Applied Polymer Science, vol. 102, no. 5, pp. 4983–4988, 2006.
[58]  H. Essawy and D. El-Nashar, “The use of montmorillonite as a reinforcing and compatibilizing filler for NBR/SBR rubber blend,” Polymer Testing, vol. 23, no. 7, pp. 803–807, 2004.
[59]  M. S. Kim, G. H. Kim, and S. R. Chowdhury, “Polybutadiene rubber/organoclay nanocomposites: effect of organoclay with various modifier concentrations on the vulcanization behavior and mechanical properties,” Polymer Engineering & Science, vol. 47, no. 3, pp. 308–313, 2007.
[60]  M. A. Atieh, “Effect of functionalize carbon nanotubes with amine functional group on the mechanical and thermal properties of styrene butadiene rubber,” Journal of Thermoplastic Composite Materials, vol. 24, no. 5, pp. 613–624, 2011.
[61]  D. S. Camphell, “Structural characterization of vulcanizates part X. Thiol-disulfide interchange for cleaving disulfide crosslinks in natural rubber vulcanizates,” Journal of Applied Polymer Science, vol. 13, pp. 1201–1214, 1969.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133