The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride/UV system is used in the synthesis of silver nanoparticles (AgNPs). Green synthesis method involved using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. AgNPs obtained had a spherical shape morphology and a size of 1–7?nm. To impart antibacterial properties, wool and acrylic fabrics were treated with AgNPs obtained. The PI/UV system was further utilized to fix AgNPs onto wool and acrylic fabrics by photocrosslinking to impart durable antibacterial properties. The effect of irradiation time on the antibacterial performance before and after repeated washing cycles was studied. S. aureus (as G +ve) and E. coli (as G ?ve) were used to estimate the antibacterial performance of the finished fabrics. The antibacterial performance was directly proportional to the irradiation time but inversely proportional to the number of washing cycles. However, after the 15th washing cycle, samples still have bacteriostatic effect; that is, although they show zero inhibition zone, they cannot be attacked by the bacterial growth and do not inhibit the bacterial growth. AgNPs finished wool fabrics showed more antibacterial activity than those of AgNPs finished acrylic fabrics. 1. Introduction It is well known that silver exhibits effective antibacterial properties with low toxicity for humans and animals compared with other heavy metals and some organic antibacterial agents. Silver and silver compounds are effective for both Gram ?ve and Gram +ve bacteria, whereas the efficiency of conventional antibiotics varies with the species of bacteria [1]. Using AgNPs leads to increasing the number of particles per unit area, and, thus, antibacterial effects can be maximized [2]. Metal nanoparticles can be prepared and stabilized by physical and chemical methods; the chemical approach, such as chemical reduction, electrochemical techniques, and photochemical reduction, is most widely used [3, 4]. In the global efforts, to reduce generated hazardous waste, “green” synthesis of AgNPs is progressively integrating with modern developments in science and industry. This “green” synthesis is geared to guide in minimizing the use of unsafe reactants and maximizing the efficiency of synthesis process. AgNPs were green synthesized using different techniques [5–14]. Direct photoreduction and photosensitization are powerful approaches for the in situ synthesis in polymer matrixes [15–21]. The heart of the photochemical approach is the generation of M0 (metal NPs) in such conditions that
References
[1]
M. S. A. S. Shah, M. Nag, T. Kalagara, S. Singh, and S. V. Manorama, “Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications,” Chemistry of Materials, vol. 20, no. 7, pp. 2455–2460, 2008.
[2]
S. Y. Yeo and S. H. Jeong, “Preparation and characterization of polypropylene/silver nanocomposite fibers,” Polymer International, vol. 52, pp. 1053–1057, 2003.
[3]
W. Chen, W. Cai, L. Zhang, G. Wang, and L. Zhang, “Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica,” Journal of Colloid and Interface Science, vol. 238, no. 2, pp. 291–295, 2001.
[4]
A. Frattini, N. Pellegri, D. Nicastro, and O. De Sanctis, “Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes,” Materials Chemistry and Physics, vol. 94, no. 1, pp. 148–152, 2005.
[5]
E. S. Abdel-Halim, M. H. El-Rafie, and S. S. Al-Deyab, “Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles,” Carbohydrate Polymers, vol. 85, no. 3, pp. 692–697, 2011.
[6]
M. Chen, S. Y. Luo, W. C. Xu, and X. L. Zhang, “Green synthesis of nano-size silver particles colloidal sol,” Materials Science Forum, vol. 675, pp. 1041–1044, 2011.
[7]
M. H. El-Rafie, T. I. Shaheen, A. A. Mohamed, and A. Hebeish, “Bio-synthesis and applications of silver nanoparticles onto cotton fabrics,” Carbohydrate Polymers, vol. 90, pp. 915–920, 2012.
[8]
A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, “Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles,” Carbohydrate Polymers, vol. 82, no. 3, pp. 933–941, 2010.
[9]
Z. Sadowski, “Biosynthesis and application of silver and gold nanoparticles,” in Silver Nanoparticles, D. P. Perez, Ed., pp. 257–276, InTech, 2010.
[10]
M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun, “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity,” Colloids and Surfaces B, vol. 73, no. 2, pp. 332–338, 2009.
[11]
A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, 2012.
[12]
V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009.
[13]
P. Vankar and D. Shukla, “Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric,” Applied Nanoscience, vol. 2, pp. 163–168, 2012.
[14]
K. Vijayaraghavan, S. P. K. Nalini, N. U. Prakash, and D. Madhankumar, “One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum,” Colloids and Surfaces B, vol. 94, pp. 114–117, 2012.
[15]
L. Balan and D. Burget, “Synthesis of metal/polymer nanocomposite by UV-radiation curing,” European Polymer Journal, vol. 42, no. 12, pp. 3180–3189, 2006.
[16]
L. Balan, M. Jin, J.-P. Malval, H. Chaumeil, A. Defoin, and L. Vidal, “Fabrication of silver nanoparticle-embedded polymer promoted by combined photochemical properties of a 2,7-diaminofluorene derivative dye,” Macromolecules, vol. 41, no. 23, pp. 9359–9365, 2008.
[17]
L. Balan, J.-P. Malval, R. Schneider, D. Le Nouen, and D.-J. Lougnot, “In-situ fabrication of polyacrylate-silver nanocomposite through photoinduced tandem reactions involving eosin dye,” Polymer, vol. 51, no. 6, pp. 1363–1369, 2010.
[18]
L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Progress in Organic Coatings, vol. 62, no. 3, pp. 351–357, 2008.
[19]
C. Decker, L. Keller, K. Zahouily, and S. Benfarhi, “Synthesis of nanocomposite polymers by UV-radiation curing,” Polymer, vol. 46, no. 17, pp. 6640–6648, 2005.
[20]
L. Keller, C. Decker, K. Zahouily, S. Benfarhi, J. M. Le Meins, and J. Miehe-Brendle, “Synthesis of polymer nanocomposites by UV-curing of organoclay-acrylic resins,” Polymer, vol. 45, no. 22, pp. 7437–7447, 2004.
[21]
Y. Yagci, O. Sahin, T. Ozturk, S. Marchi, S. Grassini, and M. Sangermano, “Synthesis of silver/epoxy nanocomposites by visible light sensitization using highly conjugated thiophene derivatives,” Reactive and Functional Polymers, vol. 71, no. 8, pp. 857–862, 2011.
[22]
O. B. Wurzburg, “Introduction,” in Modified Starches: Properties and Uses, O. B. Wurzburg, Ed., CRC Press, 1987.
[23]
J. S. Bradley, G. Schmid, D. V. Talapin, E. V. Shevchenko, and H. Weller, “Syntheses and characterizations: 3.2 synthesis of metal nanoparticles,” in Nanoparticles from Theory to Application, pp. 185–238, Wiley-VCH GmbH & Co. KGaA, 2005.
[24]
J. Lin, S. Qiu, K. Lewis, and A. M. Klibanov, “Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine,” Biotechnology and Bioengineering, vol. 83, no. 2, pp. 168–172, 2003.
[25]
K. Parthasarathi and S. P. Borkar, “Antibacterial and UV protection finishes of textiles by metal and metal oxide nano particles-A review,” Colourage, vol. 54, no. 7, pp. 43–45, 2007.
[26]
R. Stevanato and R. Tedesco, “Leacril Saniwear, new antibacterial acrylic fibre from Motefibre,” Revista de Quimica Textil, vol. 151, pp. 76–77, 2002.
[27]
P. Zhu, S.-Y. Sui, B. Wang, J.-B. Zhang, and C.-H. Dong, “Development of nano-antimicrobial dry acrylic fibers and raschel blankets,” Maofang Keji, no. 4, pp. 38–40, 2006.
[28]
N. Hideo and N. Tetsuo, “Trichophyton-inhibiting silver-containing acrylonitrile fibre structures,” vol 082945, Japan, 2005.
[29]
K. Hiroki and N. Hideo, “Photocatalytic active antibacterial acrylonitrile polymer fibres manufactured by heat-treating acrylonitrile polymer fibres containing antibacterial metal compounds at pH 1–6,” vol 089968, Japan, 2001.
[30]
X. Yao-Nan and Z. Han-min, “Preparation and characterization of the polyacrylonitrile antibacterial fibre containing multi-functional groups,” Gongeng Gaofenzi Xuebao, vol. 14, pp. 109–111, 2001.
[31]
T. Tetsuya, S. Taketomi, S. Katsuya, et al., “Enhancement of the antibacterial activity of acrylic fibres containing alumina-zinc silicate,” Bokin Bobai, vol. 34, 2006.
[32]
A. Medovic, M. Kostic, P. Skundric, R. Jovanovic, B. Popovic, and P. Dordevic, “Obtaining of biologically-activated fibers with antibacterial acitivity,” Hemijska Vlakna, vol. 36, pp. 3–6, 1996.
[33]
S. Abdel-Fattah, E. El-Khatib, A. A. Kantouch, and I. El-Zawawi, “Finishing of wool fabrics with metals ions and silver nanoparticles to acquire antimicrobial and UV-protection properties,” Research Journal of Textile and Apparel, vol. 14, pp. 53–64, 2010.
[34]
H. Y. Ki, J. H. Kim, S. C. Kwon, and S. H. Jeong, “A study on multifunctional wool textiles treated with nano-sized silver,” Journal of Materials Science, vol. 42, no. 19, pp. 8020–8024, 2007.
[35]
B. Tang, J. Wang, S. Xu et al., “Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric,” Journal of Colloid and Interface Science, vol. 356, no. 2, pp. 513–518, 2011.
[36]
M. Montazer, A. Behzadnia, E. Pakdel, M. K. Rahimi, and M. B. Moghadam, “Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool,” Journal of Photochemistry and Photobiology B, vol. 103, no. 3, pp. 207–214, 2011.
[37]
L. Maleknia, A. A. Aala, and K. Yousefi, “Antibacterial properties of nanosized silver colloidal solution on wool fabric,” Asian Journal of Chemistry, vol. 22, no. 8, pp. 5925–5929, 2010.
[38]
Q. Cheng, C. Li, V. Pavlinek, P. Saha, and H. Wang, “Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties,” Applied Surface Science, vol. 252, no. 12, pp. 4154–4160, 2006.
[39]
M. Messaoud, E. Chadeau, C. Brunon et al., “Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics,” Journal of Photochemistry and Photobiology A, vol. 215, no. 2-3, pp. 147–156, 2010.
[40]
M. A. El-Sheikh and H. M. Ibrahim, “New eco friendly methods for the preparation of nano silver and its utilization in different textile processes,” in Photosynthesis of Silver Nanoparticles—II. Photocuring of Cotton Fabrics Finished with Silver Nanoparticles for Durable Antibacterial Finishing, M. A. El-Sheikh, Ed., pp. 39–69, National Research Centre, Cairo, Egypt, 2012.
[41]
R. A. Bottom, J. T. Guthrie, and P. N. Green, “The influence of H-donors on the photodecomposition of selected water-soluble photoinitiators,” Polymer Photochemistry, vol. 6, no. 1, pp. 59–70, 1985.
[42]
R. A. Bottom, J. T. Guthrie, and P. N. Green, “The photochemically induced grafting of 2-hydroxyethyl acrylate onto regenerated cellulose films from aqueous solutions,” Polymer Photochemistry, vol. 6, no. 2, pp. 111–123, 1985.
[43]
M. A. El-Sheikh, Synthesis of new polymeric materials based on water-soluble starch composites [Ph.D. thesis], Faculty of Science, Cairo University, Cairo, Egypt, 1999.
[44]
M. A. El-Sheikh, “Photo grafting of acrylamide onto carboxymethyl starch I. Utilization of the product in easy care finishing of cotton fabric,” in Proceedings of the 3rd Aachen-Dresden International Textile Conference, pp. 1–30, Aachen, Germany, 2009.
[45]
M. A. El-Sheikh, M. A. Ramadan, and A. El-Shafie, “Photo oxidation of rice starch II. Using a water soluble photo initiator,” Carbohydrate Polymers, vol. 78, no. 2, pp. 235–239, 2009.
[46]
M. A. ElSheikh and J. T. Guthrie, “Graft copolymerization of acrylic acid onto carboxymethyl starch using UV-irradiation,” in Proceedings of the 213th National Meeting, vol. 213, p. 36, ACS, San Francisco, Calif, USA, 1997.
[47]
M. A. El-Sheikh, “Carboxymethylation of maize starch at mild conditions,” Carbohydrate Polymers, vol. 79, no. 4, pp. 875–881, 2010.
[48]
M. A. El-Sheikh, “New eco friendly methods for the preparation of nano silver and its utilization in different textile processes,” in Photosynthesis of Silver Nanoparticles—I. Preparation and Characterization, M. A. El-Sheikh, Ed., pp. 7–38, National Research Centre, Cairo, Egypt, 2012.
[49]
G. C. Daul, R. M. Reinhardt, and J. D. Reid, “Preparation of soluble yarns by the carboxymethylation of cotton,” Textile Research Journal, vol. 23, pp. 719–726, 1953.
[50]
N. Y. Abou-Zeid, A. I. Waly, N. G. Kandile, A. A. Rushdy, M. A. El-Sheikh, and H. M. Ibrahim, “Preparation, characterization and antibacterial properties of cyanoethylchitosan/cellulose acetate polymer blended films,” Carbohydrate Polymers, vol. 84, no. 1, pp. 223–230, 2011.
[51]
M. H. El-Rafie, M. E. El-Naggar, M. A. Ramadan, M. M. G. Fouda, S. S. Al-Deyab, and A. Hebeish, “Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization,” Carbohydrate Polymers, vol. 86, no. 2, pp. 630–635, 2011.