Organic-inorganic hybrid materials prepared by sol-gel approach have attracted a great deal of attention in material science. Organic polymeric part of the composite provides mechanical and chemical stability whereas the inorganic part supports the ion-exchange behaviour and thermal stability and also increases the electrical conductivity. Such modified composite materials can be applied as an electrochemically switchable ion exchanger for water treatment, especially water softening. Polyaniline zirconium(IV) tungstoiodophosphate nanocomposite ion exchanger is prepared by sol-gel method. Polyaniline zirconium(IV) tungstoiodophosphate nanocomposite ion exchanger is synthesized and characterized by Fourier transform-infrared spectra, ultraviolet-visible spectra, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, ion exchange, conductivity, and antimicrobial studies. A mechanism for the formation of the polyaniline zirconium(IV) tungstoiodophosphate nanocomposite ion exchanger was discussed. The route reported here may be used for the preparation of other nanocomposite ion exchangers. 1. Introduction Organic-inorganic hybrid materials prepared by sol-gel approach have attracted a great deal of attention in material science. Organic polymeric part of the composite provides mechanical and chemical stability whereas the inorganic part supports the ion-exchange behaviour, thermal stability and also increases the electrical conductivity. Such modified composite materials can be applied as electrochemically switchable ion exchanger [1, 2] for water treatment, especially water softening. The synthesis of hybrid ion exchangers with controlled functionality and hydrophobicity could open new avenues for organometallic chemistry, catalysis, organic host-guest chemistry, analytical chemistry [3–5], hydrometallurgy, antibiotic purification, separation of radioactive isotopes and large scale application in water treatment and pollution control [6, 7]. Thus, organic-inorganic hybrid materials are expected to provide many possibilities as new composite materials. Accordingly, the hybrid can be used to modify organic polymer materials or to modify inorganic glassy materials. In addition to these characteristics, the hybrid materials can be considered as new composite materials that exhibit very different properties from their original components, that is, organic polymer and inorganic materials especially in the case of molecular level hybrids. Thus, the synthesis of polymeric/inorganic composites has received a great deal of attention because it
References
[1]
T. Shimidzu, A. Ohtani, and K. Honda, “Charge-controllable poly pyrrole/poly electrolyte composite membranes: part III. Electrochemical deionization system constructed by anion-exchangeable and cation-exchangeable polypyrrole electrodes,” Journal of Electroanalytical Chemistry, vol. 251, no. 2, pp. 323–337, 1988.
[2]
C. Zhong, K. Doblhofer, and G. Weinberg, “The effect of incorporated negative fixed charges on the membrane properties of polypyrrole films,” Faraday Discussions of the Chemical Society, vol. 88, pp. 307–316, 1989.
[3]
U. Schybert, N. Husing, and A. Lorenz, “Oxide gels and ceramics prepared by a nonhydrolytic Sol-Gel process,” Chemistry of Materials, vol. 7, no. 11, pp. 2110–2114, 1995.
[4]
N. K. Raman, M. T. Anderson, and C. J. Brinker, “Template-based approaches to the preparation of amorphous, nanoporous silicas,” Chemistry of Materials, vol. 8, no. 8, pp. 1682–1701, 1996.
[5]
J. Wen and G. L. Wilkans, “Organic/inorganic hybrid network materials by the Sol-Gel approach,” Chemistry of Materials, vol. 8, no. 8, pp. 1667–1681, 1996.
[6]
F. Helfrich, Ion-Exchange, Mac Graw-Hill, New York, NY, USA, 1962.
[7]
R. Kunnin, Ion- Exchange Resins, John Wiley & Sons, New York, NY, USA, 3rd edition, 1958.
[8]
R. Schoolorn, “Intercalation systems as nanostructured functional materials,” Chemistry of Materials, vol. 8, no. 8, pp. 1747–1757, 1996.
[9]
P. Gomez-Romero, “Hybrid organic-inorganic materials-in search of synergic activity,” Advanced Materials, vol. 13, p. 163, 2001.
[10]
Y. Wang and N. Herrom, “X-ray photoconductive nanocomposites,” Science, vol. 273, no. 5275, pp. 632–634, 1996.
[11]
S. Higashika, K. Kimura, Y. Matsuo, and Y. Sugie, “Synthesis of polyaniline-intercalated graphite oxide,” Carbon, vol. 37, no. 2, pp. 354–355, 1999.
[12]
A. A. Khan and M. M. Alam, “New and novel organic-inorganic type crystalline “polypyrrolel/polyantimonic acid” composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(II) ion-selective membrane electrode,” Analytica Chimica Acta, vol. 504, no. 2, pp. 253–264, 2004.
[13]
A. A. Khan and Inamuddin, “Preparation, physico-chemical characterization, analytical applications and electrical conductivity measurement studies of an “organic-inorganic” composite cation-exchanger: polyaniline Sn(IV) phosphate,” Reactive and Functional Polymers, vol. 66, no. 12, pp. 1649–1663, 2006.
[14]
A. A. Khan, Inamuddin, and M. M. Alam, “Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic-inorganic hybrid cation-exchange material: polypyrrole thorium(IV) phosphate,” Reactive and Functional Polymers, vol. 63, no. 2, pp. 119–133, 2005.
[15]
A. A. Khan and M. M. Alam, “Synthesis, characterization and analytical applications of a new and novel “organic-inorganic” composite material as a cation exchanger and Cd(II) ion-selective membrane electrode: polyaniline Sn(IV) tungstoarsenate,” Reactive and Functional Polymers, vol. 55, no. 3, pp. 277–290, 2003.
[16]
K. G. Varshney, N. Tayal, A. A. Khan, and R. Niwas, “Synthesis, characterization and analytical applications of lead (II) selective polyacrylonitrile thorium (IV) phosphate: a novel fibrous ion exchanger,” Colloids and Surfaces A, vol. 181, no. 1–3, pp. 123–129, 2001.
[17]
G. Alberti, M. Casciola, C. Dionigi, and R. Vivani, in Proceedings of the International Conference on Ion- Exchange (ICIE '95), Takamtsu, Japan, 1995.
[18]
J. C. W. Chien, Polyacetylene-Chemistry, Physics and Materials Science, chapter 2, Academic Press, San Diego, Fla, USA, 1984.
[19]
G. R. Goward, F. Leroum, and L. F. Nazir, “Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries,” Electrochimica Acta, vol. 43, no. 10-11, pp. 1307–1313, 1998.
[20]
P. Singh, J. P. Rawat, and N. Rehman, “Synthesis, characterization and Ion Exchange Properties of a New Inorganic Ion Exchange Materials: Zirconium(IV) iodooxalate,” Indian Journal of Chemistry A, vol. 41, p. 1616, 2002.
[21]
W. A. Siddiqui and S. A. Khan, “Synthesis, characterization and ion exchange properties of zirconium(IV) tungstoiodophosphate, a new cation exchanger,” Bulletin of Materials Science, vol. 30, no. 1, pp. 43–49, 2007.
[22]
D. C. Trivedi, “Polyanilines in conductive polymers: synthesis and electrical properties,” in Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, Ed., vol. 2, p. 505, John Wiley & Sons, Chichester, UK, 1997.
[23]
A. A. Khan and T. Akhtar, “Preparation, physico-chemical characterization and electrical conductivity measurement studies of an organic-inorganic nanocomposite cation-exchanger: poly-o-toluidine Zr(IV) phosphate,” Electrochimica Acta, vol. 53, no. 17, pp. 5540–5548, 2008.
[24]
N. E. Topp and K. W. Pepper, “Properties of ion-exchange resins in relation to their structure. Part I. Titration curves,” Journal of the Chemical Society, pp. 3299–3303, 1949.
[25]
C. N. Reilley, R. W. Schmidt, and F. S. Sadek, “Chelon approach to analysis (I) survey of theory and application,” Journal of Chemical Education, vol. 36, p. 555, 1959.
[26]
J. P. Travers, J. Chroboczek, F. Devreux, and F. Genoud, “Transport and magnetic resonance studies of polyaniline,” Molecular Crystals and Liquid Crystals, vol. 121, no. 1–4, p. 195, 1985.
[27]
B. Lundberg, W. R. Salaneck, and LundstromI, “Pressure, temperature and field dependence of hopping conduction in polyaniline,” Synthetic Metals, vol. 21, no. 1–3, pp. 143–147, 1987.
[28]
W. S. Huang, A. G. Mac Diarmid, and A. J. Epstein, “Polyaniline: non-oxidative doping of the emeraldine base form to the metallic regime,” Journal of the Chemical Society, Chemical Communications, no. 23, pp. 1784–1786, 1987.
[29]
W. W. Focke, G. E. Wnek, and Y. Wei, “Influence of oxidation state, pH, and counterion on the conductivity of polyaniline,” Journal of Physical Chemistry, vol. 91, no. 22, pp. 5813–5818, 1987.
[30]
W. W. Focke and G. E. Wnek, “Conduction mechanisms in polyaniline (emeraldine salt),” Journal of Electroanalytical Chemistry, vol. 256, no. 2, pp. 343–352, 1988.
[31]
W. R. Salaneck, I. Lundstrom, W. S. Huang, and A. G. Mac Diarmid, “A two-dimensional-surface “state diagram” for polyaniline,” Synthetic Metals, vol. 13, no. 4, pp. 291–297, 1986.
[32]
R. J. Cushman, P. M. McManus, and S. C. Yang, “Spectroelectrochemical Study of Polyaniline: the construction of a Ph-potential phase diagram,” Journal of Electroanalytical Chemistry and Interfacial Chemistry, vol. 291, p. 335, 1986.
[33]
C. N. R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, NY, USA, 1963.
[34]
A. G. MacDiarmid, J. C. Chiang, W. S. Huang, B. D. Hum-phery, and N. L. D. Somasiri, “Polyaniline: protonic acid doping to the metallic regime,” Molecular Crystals and Liquid Crystals, vol. 25, p. 309, 1985.
[35]
A. A. Khan and T. Akhtar, “Preparation, physico-chemical characterization and electrical conductivity measurement studies of an organic-inorganic nanocomposite cation-exchanger: poly-o-toluidine Zr(IV) phosphate,” Electrochimica Acta, vol. 53, no. 17, pp. 5540–5548, 2008.
[36]
A. P. Gupta, H. Agarwal, and S. Ikram, “Studies on new composite material polyaniline zirconium (IV) tungstophosphate, Th (IV) selective cation exchanger,” Journal of Indian Chemical Society, vol. 80, p. 57, 2003.
[37]
S. A. Nabi, A. Islam, and N. Rehman, “Synthesis, ion exchange properties and analytical application of a semi crystalline Zr(IV) sulphosalicylate,” Annales de Chimie Science des Matériaux, vol. 22, no. 7, p. 463, 1997.
[38]
J. P. Rawat and J. P. Singh, “Studies on inorganic ion exchangers. II. Synthesis, ion exchange properties, and applications of ferric arsenate,” Canadian Journal of Chemistry, vol. 54, no. 16, pp. 2534–2539, 1976.
[39]
F. C. Nachod and W. Wood, “The reaction velocity of ion exchange,” Journal of the American Chemical Society, vol. 66, no. 8, pp. 1380–1384, 1944.
[40]
G. James, Cappuccino, and N. Sherman, Microbiological Laboratory Manual, Wonder Book, Frederick, Md, USA, 5th edition, 1999.