Mercury is a highly toxic and hazardous pollutant even in trace quantity which poses a major threat to the ecosystem on deposition in the environment. Removal of mercury from aqueous systems has been a subject of immense interest for researchers. The synthesis of highly cross-linked cellulose beads embedded with ferric oxide for removal of Hg(II) ions from aqueous systems has been investigated. The beads were synthesized by solution polymerization technique. The impact of solution pH, ferric oxide content, and initial concentration of Hg(II) ions on the uptake of Hg(II) ions revealed that maximum adsorption occurs at pH 6.0 with beads having 10?wt% Fe2O3 content. Equilibrium adsorption of Hg(II) ions followed the Langmuir isotherm model. Adsorption was observed to follow pseudo second-order kinetic model and intraparticle diffusion model. 1. Introduction Heavy metals such as mercury are considered as toxic and their accumulation over the period of time in human bodies causes serious health hazards, possessing major threats to human health. Heavy metal pollution can arise from various sources but is highly common from purification of metals, for example, smelting of copper and preparation of nuclear fuels. Unlike organic pollutants, heavy metals do not biodegrade which is the largest problem associated with the persistence of heavy metals which has the potential of bioaccumulation and biomagnification entering the food chain causing heavier exposure and hence biological disorders. Mercury affects the central nervous system, kidneys [1], and liver. Compared to other heavy metals, mercury even at low concentrations is highly neurotoxic [2]. Various conventional methods such as chemical precipitation, membrane filtration, ion exchange, lime softening, coagulation-flocculation, photoreduction [1, 3, 4], and electrochemical treatment have been employed for removal of mercury from aqueous systems. Adsorption is the most effective technique for removing heavy metal ions from aqueous solutions. The important aspect of the adsorption process is easy regeneration ability and less operational cost, simple design, easy operation, and free or less generation of toxic substances [5]. Adsorption techniques have proven successful in removing colored organic species and the choice of the adsorbent is one of the key factors determining the effectiveness of any adsorption process. The adsorption process at solid/liquid interface has been extensively employed for several reasons, mainly due to its efficiency and economy [6]. Physical adsorption because of its low cost, high
References
[1]
J. N. Bhakta and Y. Munekage, “Mercury(II) adsorption onto the magnesium oxide impregnated volcanic ash soil derived ceramic from aqueous phase,” International Journal of Environmental Research, vol. 5, no. 3, pp. 585–594, 2011.
[2]
M. Aschner and J. L. Aschner, “Mercury neurotoxicity: mechanisms of blood-brain barrier transport,” Neuroscience and Biobehavioral Reviews, vol. 14, no. 2, pp. 169–176, 1990.
[3]
H. Agarwal, D. Sharma, S. K. Sindhu, S. Tyagi, and S. Ikram, “Removal of mercury from wastewater use of green adsorbents—a review,” Electronic Journal of Environmental, Agricultural and Food Chemistry, vol. 9, no. 9, pp. 1551–1558, 2010.
[4]
X.-W. Wu, H.-W. Ma, J.-H. Li, J. Zhang, and Z.-H. Li, “The synthesis of mesoporous aluminosilicate using microcline for adsorption of mercury(II),” Journal of Colloid and Interface Science, vol. 315, no. 2, pp. 555–561, 2007.
[5]
E. Khan, M. Li, and C. P. Huang, “Hazardous waste treatment technologies,” Water Environment Research, vol. 80, no. 10, pp. 1654–1708, 2008.
[6]
A. Gürses, ?. Do?ar, M. Yal?in, M. A?ikyildiz, R. Bayrak, and S. Karaca, “The adsorption kinetics of the cationic dye, methylene blue, onto clay,” Journal of Hazardous Materials, vol. 131, no. 1–3, pp. 217–228, 2006.
[7]
A. K. Meena, G. K. Mishra, S. Kumar, C. Rajagopal, and P. N. Nagar, “Low-cost adsorbents for the removal of mercury (II) from aqueous solution-a comparative study,” Defence Science Journal, vol. 54, no. 4, pp. 537–548, 2004.
[8]
I. G. Shibi and T. S. Anirudhan, “Synthesis, characterization, and application as a mercury(II) sorbent of banana stalk (Musa paradisiaca)—polyacrylamide grafted copolymer bearing carboxyl groups,” Industrial and Engineering Chemistry Research, vol. 41, no. 22, pp. 5341–5352, 2002.
[9]
Y. Yadav, M. Pakhmore, M. Arsalaan, and S. J. Purohit, “Bio-adsorption of Hg(II) ions from waste water using coconut coir,” International Journal of Engineering Research and Technology, vol. 4, no. 1, pp. 1–8, 2011.
[10]
R. R. Navarro, K. Sumi, N. Fujii, and M. Matsumura, “Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine,” Water Research, vol. 30, no. 10, pp. 2488–2494, 1996.
[11]
G. Bayramo?lu and M. Y. Arica, “Kinetics of mercury ions removal from synthetic aqueous solutions using by novel magnetic p(GMA-MMA-EGDMA) beads,” Journal of Hazardous Materials, vol. 144, no. 1-2, pp. 449–457, 2007.
[12]
Y.-X. Bai and Y.-F. Li, “Preparation and characterization of crosslinked porous cellulose beads,” Carbohydrate Polymers, vol. 64, no. 3, pp. 402–407, 2006.
[13]
A. Ayalew, R. R. Gonte, and K. Balasubramanian, “Development of polymer composite beads for dye adsorption,” International Journal of Green Nanotechnology, vol. 4, no. 4, pp. 440–454, 2012.
[14]
A. Y. Y. Loo, Y. P. Lay, M. G. Kutty, O. Timpe, M. Behrens, and S. B. A. Hamid, “Spectrophotometric determination of mercury with Iodide and Rhodamine B,” Sains Malaysiana, vol. 41, no. 2, pp. 213–218, 2012.
[15]
R. R. Gonte, K. Balasubramanian, P. C. Deb, and P. Singh, “Synthesis and characterization of mesoporous hypercrosslinked poly(styrene co-maleic anhydride) microspheres,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 61, no. 12, pp. 919–930, 2012.
[16]
K. Anoop Krishnan and T. S. Anirudhan, “Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies,” Journal of Hazardous Materials, vol. 92, no. 2, pp. 161–183, 2002.
[17]
R. Gonte and K. Balasubramanian, “Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: isotherms and kinetics,” Journal of Saudi Chemical Society, 2013.
[18]
I. Langmuir, “The constitution and fundamental properties of solids and liquids. Part I. Solids,” The Journal of the American Chemical Society, vol. 38, no. 11, pp. 2221–2295, 1916.
[19]
O. Abdelwahab, “Kinetic and isotherm studies of copper (II) removal from wastewater using various adsorbents,” Egyptian Journal of Aquatic Research, vol. 33, no. 1, pp. 125–143, 2007.
[20]
S. Rengaraj, J.-W. Yeon, Y. Kim, Y. Jung, Y.-K. Ha, and W.-H. Kim, “Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis,” Journal of Hazardous Materials, vol. 143, no. 1-2, pp. 469–477, 2007.
[21]
A. Mittal, L. Kurup, and J. Mittal, “Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers,” Journal of Hazardous Materials, vol. 146, no. 1-2, pp. 243–248, 2007.