Biodegradable poly(L-lactic acid) (PLLA)/mesoporous silica nanocomposites were prepared by grafting L-lactic acid oligomer onto silanol groups at the surface of mesoporous silica (SBA-15). The infrared results showed that the lactic acid oligomer was grafted onto the mesoporous silica. Surface characterization of mesoporous silica proved that the grafted oligomer blocked the entry of nitrogen into the mesopores. Thermal analysis measurements showed evidence that, once mixed with PLLA, SBA-15 not only nucleated the PLLA but also increased the total amount of crystallinity. Neat PLLA and its nanocomposites crystallized in the same crystal habit and, as expected, PLLA had a defined periodicity compared with the nanocomposites. This was because the grafted macromolecules on silica tended to cover the lamellar crystalline order. The g-SBA-15 nanoparticles improved the tensile moduli, increasing also the tensile strength of the resultant nanocomposites. Overall, the silica concentration tended to form a brittle material. 1. Introduction Poly(L-lactic acid) (PLLA) is a linear aliphatic polyester widely used in biomedical applications because it is biodegradable, biocompatible, and nontoxic for the human body. It is also approved by the Food and Drug Administration (FDA) for applications in orthopedic devices [1]. Moreover, PLLA is used as scaffold for bone tissue regeneration [2–6]. However, its slow crystallization, slow degradation rates, low stability during degradation, and relatively poor mechanical properties have limited the applications of this polymer, in particular as a scaffold material [7]. Therefore, new applications for this polymer have proposed the preparation of nanocomposites with inorganic reinforcements as a convenient alternative [8, 9]. Some examples are PLLA nanocomposites with nanoclays [10, 11], nanohydroxyapatite [12, 13], carbon nanotubes [14, 15], and silicon dioxide [16, 17]. In general terms, the mechanical and thermal properties of the resultant nanocomposites have been improved, and the degree of crystallization, and hydrolytic degradation resistance has also been enhanced [14]. However, certain inorganic materials, such as carbon nanotubes [18], are considered to be toxic or harmful to cells. A new class of polymeric materials, for which there are few published studies, takes advantage of mesoporous silicas. These are synthetic materials with ordered arrangements of channels and cavities of different geometries and siloxane walls. One example is SBA-15, a mesoporous material synthetized using triblock copolymer surfactant as a
References
[1]
J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000.
[2]
P. A. Gunatillake, R. Adhikari, and N. Gadegaard, “Biodegradable synthetic polymers for tissue engineering,” European Cells and Materials, vol. 5, pp. 1–16, 2003.
[3]
X. Liu and P. X. Ma, “Polymeric scaffolds for bone tissue engineering,” Annals of Biomedical Engineering, vol. 32, no. 3, pp. 477–486, 2004.
[4]
A. J. Salgado, O. P. Coutinho, and R. L. Reis, “Bone tissue engineering: state of the art and future trends,” Macromolecular Bioscience, vol. 4, no. 8, pp. 743–765, 2004.
[5]
A. Mistry and A. Mikos, “Advances in biochemical engineering,” in Regenerative Medicine II, vol. 94, pp. 1–22, 2005.
[6]
R. van Dijkhuizen-Randersma, L. Moroni, A. van Apeldoorn, Z. Zhang, and D. Grijpma, “Degradable polymers for tissue engineering,” in Tissue Engineering, C. van Blitterswijk, Ed., pp. 193–221, Elsevier Academic Press, London, UK, 2008.
[7]
K. van de Velde and P. Kiekens, “Biopolymers: overview of several properties and consequences on their applications,” Polymer Testing, vol. 21, no. 4, pp. 433–442, 2002.
[8]
F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, “Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,” Journal of Composite Materials, vol. 40, no. 17, pp. 1511–1575, 2006.
[9]
I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J. M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: a review,” Polymer Degradation and Stability, vol. 95, no. 11, pp. 2126–2146, 2010.
[10]
S. I. Marras, I. Zuburtikudis, and C. Panayiotou, “Nanostructure versus microstructure: morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids,” European Polymer Journal, vol. 43, no. 6, pp. 2191–2206, 2007.
[11]
L. H. Lin, H. J. Liu, and N. K. Yu, “Morphology and thermal properties of poly(L-lactic acid)/organoclay nanocomposites,” Journal of Applied Polymer Science, vol. 106, no. 1, pp. 260–266, 2007.
[12]
X. Qiu, Z. Hong, J. Hu, L. Chen, X. Chen, and X. Jing, “Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide,” Biomacromolecules, vol. 6, no. 3, pp. 1193–1199, 2005.
[13]
C. Y. Zhang, H. Lu, Z. Zhuang, X. P. Wang, and Q. F. Fang, “Nano-hydroxyapatite/poly(L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties,” Journal of Materials Science, vol. 21, no. 12, pp. 3077–3083, 2010.
[14]
Y. Zhao, Z. Qiu, and W. Yang, “Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of Biodegradable poly(L-lactide),” Journal of Physical Chemistry B, vol. 112, no. 51, pp. 16461–16468, 2008.
[15]
G.-X. Chen, H.-S. Kim, B. H. Park, and J.-S. Yoon, “Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid),” Journal of Physical Chemistry B, vol. 109, no. 47, pp. 22237–22243, 2005.
[16]
S. Yan, J. Yin, Y. Yang, Z. Dai, J. Ma, and X. Chen, “Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide),” Polymer, vol. 48, no. 6, pp. 1688–1694, 2007.
[17]
D. Li, G. Liu, L. Wang, and Y. Shen, “Preparation and thermo-oxidative degradation of poly(L-lactic acid)/poly(L-lactic acid)-grafted SiO2 nanocomposites,” Polymer Bulletin, vol. 67, no. 8, pp. 1529–1538, 2011.
[18]
M. Bottini, S. Bruckner, K. Nika et al., “Multi-walled carbon nanotubes induce T lymphocyte apoptosis,” Toxicology Letters, vol. 160, no. 2, pp. 121–126, 2006.
[19]
D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, “Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures,” Journal of the American Chemical Society, vol. 120, no. 24, pp. 6024–6036, 1998.
[20]
F. Zhang, Y. Yan, H. Yang et al., “Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15,” Journal of Physical Chemistry B, vol. 109, no. 18, pp. 8723–8732, 2005.
[21]
L. Wei, N. Hu, and Y. Zhang, “Synthesis of polymer-mesoporous silica nanocomposites,” Materials, vol. 3, no. 7, pp. 4066–4079, 2010.
[22]
M. Vallet-Regí, L. Ruiz-González, I. Izquierdo-Barba, and J. M. González-Calbet, “Revisiting silica based ordered mesoporous materials: medical applications,” Journal of Materials Chemistry, vol. 16, pp. 26–31, 2006.
[23]
M. Vallet-Regí, M. Colilla, and I. Izquierdo-Barba, “Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration,” Journal of Biomedical Nanotechnology, vol. 4, no. 1, pp. 1–15, 2008.
[24]
I. Izquierdo-Barba, M. Colilla, and M. Vallet-Regí, “Nanostructured mesoporous silicas for bone tissue regeneration,” Journal of Nanomaterials, vol. 2008, Article ID 106970, 14 pages, 2008.
[25]
L. Wu, D. Cao, Y. Huang, and B.-G. Li, “Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization,” Polymer, vol. 49, no. 3, pp. 742–748, 2008.
[26]
D. Li, G. Lu, L. Wang, and Y. Shen, “Preparation and thermo-oxidative degradation of poly(l-lactic acid)/poly(l-lactic acid)-grafted SiO2 nanocomposites,” Polymer Bulletin, vol. 67, no. 8, pp. 1529–1538, 2011.
[27]
L. Chen, T. Horiuchi, T. Mori, and K. Maeda, “Postsynthesis hydrothermal restructuring of M41S mesoporous molecular sieves in water,” Journal of Physical Chemistry B, vol. 103, no. 8, pp. 1216–1222, 1999.
[28]
S. I. Moon, C. W. Lee, M. Miyamoto, and Y. Kimura, “Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight Poly(L-lactic acid),” Journal of Polymer Science A, vol. 38, no. 9, pp. 1673–1679, 2000.
[29]
F. Achmad, K. Yamane, S. Quan, and T. Kokugan, “Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators,” Chemical Engineering Journal, vol. 151, no. 1–3, pp. 342–350, 2009.
[30]
J. Rouquerol, D. Avnir, C. W. Fairbridge et al., “Recommendations for the characterization of porous solids,” Pure and Applied Chemistry, vol. 66, no. 8, pp. 1739–1758, 1994.
[31]
M. Kruk, M. Jaroniec, C. H. Ko, and R. Ryoo, “Characterization of the porous structure of SBA-15,” Chemistry of Materials, vol. 12, no. 7, pp. 1961–1968, 2000.
[32]
B. A. Morrow and A. J. McFarlan, “Chemical reactions at silica surfaces,” Journal of Non-Crystalline Solids, vol. 120, no. 1–3, pp. 61–71, 1990.
[33]
K. Moller, T. Bein, and R. X. Fischer, “Entrapment of PMMA polymer strands in microand mesoporous materials,” Chemistry of Materials, vol. 10, no. 7, pp. 1841–1852, 1998.
[34]
J. H. Lee, T. G. Park, H. S. Park et al., “Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold,” Biomaterials, vol. 24, no. 16, pp. 2773–2778, 2003.
[35]
X. Lu, X. Lv, Z. Sun, and Y. Zheng, “Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization,” European Polymer Journal, vol. 44, no. 8, pp. 2476–2481, 2008.
[36]
F. J. Medellín-Rodríguez, L. Larios-López, A. Zapata-Espinoza, O. Dávalos-Montoya, P. J. Phillips, and J. S. Lin, “Melting behavior of polymorphics: molecular weight dependence and steplike mechanisms in nylon-6,” Macromolecules, vol. 37, no. 5, pp. 1799–1809, 2004.
[37]
J.-R. Sarasua, R. E. Prud'homme, M. Wisniewski, A. Le Borgne, and N. Spassky, “Crystallization and melting behavior of polylactides,” Macromolecules, vol. 31, no. 12, pp. 3895–3905, 1998.
[38]
T. Kawai, N. Rahman, G. Matsuba et al., “Crystallization and melting behavior of poly (L-lactic acid),” Macromolecules, vol. 40, no. 26, pp. 9463–9469, 2007.
[39]
M. Yasuniwa, S. Tsubakihara, K. Iura, Y. Ono, Y. Dan, and K. Takahashi, “Crystallization behavior of poly(l-lactic acid),” Polymer, vol. 47, no. 21, pp. 7554–7563, 2006.
[40]
D. C. Bassett, “Aspects of mechanical behavior,” in Principles of Polymer Morphology, vol. 234, Cambridge University Press, 1981.
[41]
X. Ji, J. E. Hampsey, Q. Hu, J. He, Z. Yang, and Y. Lu, “Mesoporous silica-reinforced polymer nanocomposites,” Chemistry of Materials, vol. 15, no. 19, pp. 3656–3662, 2003.