全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microstructural and Mechanical Studies of PVA Doped with ZnO and WO3 Composites Films

DOI: 10.1155/2014/846140

Full-Text   Cite this paper   Add to My Lib

Abstract:

Polymer composites of ZnO and WO3 nanoparticles doped polyvinyl alcohol (PVA) matrix have been prepared using solvent casting method. The microstructural properties of prepared films were studied using FTIR, XRD, SEM, and EDAX techniques. In the doped PVA, many irregular shifts in the FTIR spectra have been observed and these shifts in bands can be understood on the basis of intra/intermolecular hydrogen bonding with the adjacent OH group of PVA. The chemical composition, phase homogeneity, and morphology of the polymer composites of the polymer film were studied using EDAX and SEM. These data indicate that the distribution of nanosized ZnO and WO3 dopants is uniform and confirm the presence of ZnO and WO3 in the film. The crystal structure and crystallinity of polymer composites were studied by XRD. It was found that the change in structural repositioning and crystallinity of the composites takes place due to the interaction of dopants and also due to complex formation. The mechanical studies of doped polymer films were carried out using universal testing machine (UTM) at room temperature, indicating that the addition of the ZnO and WO3 with weight percentage concentration equal to 14% increases the tensile strength and Young’s modulus. 1. Introduction The doping of nanoscopic organic or inorganic materials into polymeric matrices represents a strategic route to improve the performance of material characteristics like structural, physical, chemical, optical, electrical, and mechanical properties. These nanocomposites are of new class of materials made with nanosized fillers like metals, metal oxides, and so forth. Thus metal-polymer composites can be obtained by in situ and ex situ techniques [1–4]. In the in situ methods, metal particles are generated inside a polymer matrix by decomposition (e.g., thermolysis, photolysis, radiolysis, etc.) or chemical reduction of a metallic precursor dissolved into the polymer. In the ex situ approach, nanoparticles are first produced by soft-chemistry routes and then dispersed into polymeric matrices [5–9]. For the synthesis of metal-polymer composites the ex situ techniques are frequently preferred because of the high quality of the film. Over the past decades, transition metal oxides (TMOs) have been widely investigated for use in applications related to electronic, optical, and mechanical properties. Among these, TMOs, zinc oxide (ZnO), and tungsten oxide (WO3) are promising materials for the various above mentioned applications [10–13]. When these TMOs are incorporated in polymers, it improves their electrical,

References

[1]  Z. H. Mbhele, M. G. Salemane, C. G. C. E. van Sittert, J. M. Nedeljkovi?, V. Djokovi?, and A. S. Luyt, “Fabrication and characterization of silver-polyvinyl alcohol nanocomposites,” Chemistry of Materials, vol. 15, no. 26, pp. 5019–5024, 2003.
[2]  I. Latif, E. E. AL-Abodi, D. H. Badri, and J. Al Khafagi, “Preparation, characterization and electrical Study of (carboxymethylated polyvinyl alcohol/ZnO) nanocomposites,” The American Journal of Polymer Science, vol. 2, pp. 135–140, 2012.
[3]  Z. Guo, D. Zhang, S. Wei et al., “Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film,” Journal of Nanoparticle Research, vol. 12, no. 7, pp. 2415–2426, 2010.
[4]  R. Ricciardi, F. Auriemma, C. De Rosa, and F. Lauprêtre, “X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques,” Macromolecules, vol. 37, no. 5, pp. 1921–1927, 2004.
[5]  A. H. Lu, G. H. Lu, A. M. Kessinger, and C. A. Foss Jr., “Dichroic thin layer films prepared from alkanethiol-coated gold nanoparticles,” Journal of Physical Chemistry B, vol. 101, no. 45, pp. 9139–9142, 1997.
[6]  Y. Dirix, C. Darribère, W. Heffels, C. Bastiaansen, W. Caseri, and P. Smith, “Optically anisotropic polyethylene: gold nanocomposites,” Applied Optics, vol. 38, no. 31, pp. 6581–6586, 1999.
[7]  L. Zimmerman, M. Weibel, W. Caseri, U. W. Suter, and P. Walther, “Polymer nanocomposites with “ultralow” refractive index,” Polymers For Advanced Technologies, vol. 4, no. 1, pp. 1–7, 1993.
[8]  G. L. Fisher and R. W. Boyd, Nanostructured Materials Cluster, Composites, and Thin Films, The American Chemical Society, Washington, DC, USA, 1998.
[9]  R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensors and Actuators B, vol. 29, no. 1–3, pp. 261–267, 1995.
[10]  D. Manno, A. Serra, M. di Giulio, G. Micocci, and A. Tepore, “Physical and structural characterization of tungsten oxide thin films for NO gas detection,” Thin Solid Films, vol. 324, no. 1-2, pp. 44–51, 1998.
[11]  D. Kumar, S. Karan Jat, K. P. Khanna, N. Vijayan, and S. Banerjee, “Synthesis, characterization, and studies of PVA/Co-Doped ZnO nanocomposite films,” International Journal of Green Nanotechnology, vol. 4, no. 3, pp. 408–416, 2012.
[12]  C. R. Gorla, N. W. Emanetoglu, S. Liang et al., “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition,” Journal of Applied Physics, vol. 85, no. 5, pp. 2595–2602, 1999.
[13]  S. Ashraf, C. S. Blackman, R. G. Palgrave, and I. P. Parkin, “Aerosol-assisted chemical vapour deposition of WO3 thin films using polyoxometallate precursors and their gas sensing properties,” Journal of Materials Chemistry, vol. 17, no. 11, pp. 1063–1070, 2007.
[14]  M. Soliman Selim, R. Seoudi, and A. A. Shabaka, “Polymer based films embedded with high content of ZnSe nanoparticles,” Materials Letters, vol. 59, no. 21, pp. 2650–2654, 2005.
[15]  E. J. Shin, Y. H. Lee, and S. C. Choi, “Study on the structure and processibility of the iodinated poly(vinyl alcohol). I. Thermal analyses of iodinated poly(vinyl alcohol) films,” Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2407–2415, 2004.
[16]  L. Dai, J. Li, and E. Yamada, “Effect of glycerin on structure transition of PVA/SF blends,” Journal of Applied Polymer Science, vol. 86, no. 9, pp. 2342–2347, 2002.
[17]  H. M. Zidan, “Structural properties of CrF3, and MnCl2-filled poly(vinyl alcohol) films,” Journal of Applied Polymer Science, vol. 88, no. 5, pp. 1115–1120, 2003.
[18]  P. P. Kundu, J. Biswas, H. Kim, and S. Choe, “Influence of film preparation procedures on the crystallinity, morphology and mechanical properties of LLDPE films,” European Polymer Journal, vol. 39, no. 8, pp. 1585–1593, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133