Darifenacin is a urinary antispasmodic. The oral absorption of darifenacin is poor due to its low solubility and poor bioavailability (15–19%). Darifenacin was complexed with hydroxylropyl beta-cyclodextrin (Hpβ-CD). The best results were obtained with the coevaporation that interacts in a 1?:?1 drug?:?cyclodextrin molar ratio. The solid inclusion complexes were found to be amorphous in the characterization. The dissolution rate of darifenacin from the Hpβ-CD solid inclusion complex was increased compared to the powdered drug. The controlled release buccoadhesive patches for the delivery of darifenacin were prepared using HPMC K100M CR and HPMC K15. The coevaporation complex of the drug was used in the formulation due to its increased saturation solubility and increased ease of dissolution. The patches were evaluated for their surface pH, folding endurance, swelling, mucoadhesive properties, in vitro residence time, vapour transmission test, and in vitro and ex vivo release studies. Formulations Hb2 (2%) and Pb4 (4%) were found to be optimized. These two formulations can be used for buccal delivery of darifenacin which avoids first pass effect and leads to increased bioavailability of darifenacin. 1. Introduction Cyclodextrin is capable of forming inclusion complexes with many drugs by taking up a whole drug molecule, or a part of it, into the cavity of the cyclodextrin molecule. Drug cyclodextrins complexes can improve the clinical usage of drugs by increasing their aqueous solubility, dissolution rate, and pharmaceutical availability [1]. Hpβ-CD can be used to solubilise poorly water-soluble drugs by complexation and then delivery via the buccal or sublingual mucosa may be advantageous for increasing drug absorption. The buccal route has high acceptance due to avoidance of first pass metabolism and possibility of being accessible for controlled drug release. Various bioadhesive mucosal dosage forms have been developed which include adhesive tablets, gels, ointments, and more recently patches. Buccal patches are preferred over adhesive tablets in terms of flexibility and patients comfort.Nowadays bioadhesive polymers receive considerable attention as platforms for buccal controlled delivery due to their ability to localize the dosage form in specific regions to enhance drug bioavailability [2, 3]. Buccal mucosa is a potential site for the delivery of drugs to the systemic circulation. A drug administered through the buccal mucosa enters directly the systemic circulation, thereby minimizing the first-pass hepatic metabolism and adverse gastrointestinal
References
[1]
M. Jug and M. Becirevic-Lacan, “Influence of hydroxypropyl-β-cyclodextrin complexation on piroxicam release from buccoadhesive tablets,” European Journal of Pharmaceutical Sciences, vol. 21, no. 2-3, pp. 251–260, 2004.
[2]
N. A. Nafee, F. A. Ismail, N. A. Boraie, and L. M. Mortada, “Mucoadhesive buccal patches of miconazole nitrate: in vitro/in vivo performance and effect of ageing,” International Journal of Pharmaceutics, vol. 264, no. 1-2, pp. 1–14, 2003.
[3]
N. Salamat-Miller, M. Chittchang, and T. P. Johnston, “The use of mucoadhesive polymers in buccal drug delivery,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1666–1691, 2005.
[4]
S. Verma, M. Kaul, A. Rawat, and S. Saini, “An overview on buccal drug delivery system,” International Journal of Research in Pharmaceutical Sciences, vol. 2, no. 4, pp. 1303–1321, 2011.
[5]
F. Haab, L. Stewart, and P. Dwyer, “Darifenacin, an M3 selective receptor antagonist, is an effective and well-tolerated once-daily treatment for overactive bladder,” European Urology, vol. 45, no. 4, pp. 420–429, 2004.
[6]
T. Higuchi and K. Connors, “Phase solubility techniques,” Advances in Analytical Chemistry and Instrumentation, vol. 7, pp. 117–212, 1965.
[7]
B. N. Nalluri, K. P. R. Chowdary, K. V. R. Murthy, V. Satyanarayana, A. R. Hayman, and G. Becket, “Inclusion complexation and dissolution properties of nimesulide and meloxicam-hydroxypropyl-β-cyclodextrin binary systems,” Journal of Inclusion Phenomena, vol. 53, no. 1-2, pp. 103–110, 2005.
[8]
H. Friedrich, A. Nada, and R. Bodmier, “Solid state and dissolution rate characterization of co-ground mixtures of nifedipine and hydrophilic carriers,” Drug Development and Industrial Pharmacy, vol. 31, no. 8, pp. 719–728, 2005.
[9]
S. C. Tsinontides, P. Rajniak, D. Pham, W. A. Hunke, J. Placek, and S. D. Reynolds, “Freeze drying-principles and practice for successful scale-up to manufacturing,” International Journal of Pharmaceutics, vol. 280, no. 1-2, pp. 1–16, 2004.
[10]
G. Van Den Mooter, P. Augustijns, N. Blaton, and R. Kinget, “Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K30,” International Journal of Pharmaceutics, vol. 164, no. 1-2, pp. 67–80, 1998.
[11]
J. S. Patil, N. R. Pandya, S. C. Marapur, and S. S. Shiralashetti, “Influence of method of preparation on physico-chemical properties and in-vitro drug release profile of nimodipine-cyclodextrin inclusion complexes: a comparative study,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 1, pp. 71–81, 2010.
[12]
T. Vasconcelos, B. Sarmento, and P. Costa, “Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs,” Drug Discovery Today, vol. 12, no. 23-24, pp. 1068–1075, 2007.
[13]
S. B. Shirsand, S. Suresh, and P. V. Swamy, “Formulation design and optimization of fast dissolving clonazepam tablets,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 5, pp. 567–572, 2009.
[14]
S. D. Vanshiv, R. P. Rao, G. S. Sonar, and V. K. Gogad, “Physicochemical characterization and in vitro dissolution of oxcarbazepine and β-cyclodextrin inclusion complexes,” Indian Drugs, vol. 45, no. 10, pp. 816–820, 2008.
[15]
U. S. Pharmacopoeia National Formulary, volume 1, 725–726, 2009.
[16]
N. A. Nafee, N. A. Boraie, F. A. Ismail, and L. M. Mortada, “Design and characterization of mucoadhesive buccal patches containing cetylpyridinium chloride,” Acta Pharmaceutica, vol. 53, no. 3, pp. 199–212, 2003.
[17]
R. Khanna, S. P. Agarwal, and A. Ahuja, “Preparation and evaluation of muco-adhesive buccal films of clotrimazole for oral Candida infections,” Indian Journal of Pharmaceutical Sciences, vol. 59, no. 6, pp. 299–305, 1997.
[18]
J. Thimmasetty, G. S. Pandey, and P. R. Sathesh Babu, “Design and in vivo evaluation of carvedilol buccal mucoadhesive patches,” Pakistan Journal of Pharmaceutical Sciences, vol. 21, no. 3, pp. 241–248, 2008.
[19]
B. Parodi, E. Russo, G. Caviglioli, S. Cafaggi, and G. Bignardi, “Development and characterization of a buccoadhesive dosage form of oxycodone hydrochloride,” Drug Development and Industrial Pharmacy, vol. 22, no. 5, pp. 445–450, 1996.
[20]
F. Nakamura, R. Ohta, Y. Machida, and T. Nagai, “In vitro and in vivo nasal mucoadhesion of some water-soluble polymers,” International Journal of Pharmaceutics, vol. 134, no. 1-2, pp. 173–181, 1996.
[21]
I. D. del Consuelo, F. Falson, R. H. Guy, and Y. Jacques, “Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl,” Journal of Controlled Release, vol. 122, no. 2, pp. 135–140, 2007.