In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT). The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR) analysis, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms. 1. Introduction The poor dissolution rate of water-insoluble drugs is still a substantial problem confronting the pharmaceutical industry. A great number of new and, possibly, beneficial chemical entities do not reach the public merely because of their poor oral bioavailability due to inadequate dissolution [1, 2]. Over the years, various formulation techniques like the formation of water-soluble molecular complexes, drug micronization, solid dispersion, coprecipitation, lyophilisation, and microencapsulation are some of the major formulation tools which have been shown to eknhance the dissolution characteristics of water-insoluble drugs [3, 4]. The liquisolid compacts are a new and promising addition towards such a novel aim. This technique is a compressible and free-flowing powdered form of liquid medication. Using this new formulation technique, a liquid medication may be converted into a dry-looking, nonadherent, free-flowing, and readily compressible powder by a simple blending with selected powder excipients referred to as the carrier (cellulose, starch, lactose, etc.) and coating (silica) materials [5–7]. Research shows that soft gelatin capsules contain a solubilised liquid drug with a higher and more consistent bioavailability than the conventional oral
References
[1]
R. L?benberg and G. L. Amidon, “Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 1, pp. 3–12, 2000.
[2]
M. N. Martinez and G. L. Amidon, “A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals,” Journal of Clinical Pharmacology, vol. 42, no. 6, pp. 620–643, 2002.
[3]
G. Chawla and A. K. Bansal, “A comparative assessment of solubility advantage from glassy and crystalline forms of a water-insoluble drug,” European Journal of Pharmaceutical Sciences, vol. 32, no. 1, pp. 45–57, 2007.
[4]
G. R. Lloyd, D. Q. M. Craig, and A. Smith, “A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 48, no. 1, pp. 59–65, 1999.
[5]
K. Rajesh, R. Rajalakshmi, J. Umamaheswari, and C. Ashok, “Liquisolid technique a novel approach to enhance solubility and bioavailability,” International Journal of Biopharmaceutics, vol. 2, pp. 8–13, 2011.
[6]
S. Mallick, S. K. Pradhan, M. Chandran, M. Acharya, T. Digdarsini, and R. Mohapatra, “Study of particle rearrangement, compression behaviour and dissolution properties after melt dispersion of ibuprofen, Avicel and Aerosil,” Results in Pharma Sciences, vol. 1, no. 1, pp. 1–10, 2011.
[7]
B. Jayanthi, R. Manavalan, and P. K. Manna, “Preparation and evaluation of aceclofenac ethyl cellulose micro particles using aerosil as dispersing carrier,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 3, no. 1, pp. 67–77, 2012.
[8]
S. Spireas and S. Bolton, “Liquisolid system and methods of preparing Same,” U.S. Patent no. 5,968,550, October 1999.
[9]
S. Spireas and S. Sadu, “Enhancement of prednisolone dissolution properties using liquisolid compacts,” International Journal of Pharmaceutics, vol. 166, no. 2, pp. 177–188, 1998.
[10]
N. Tiong and A. A. Elkordy, “Effects of liquisolid formulations on dissolution of naproxen,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 73, no. 3, pp. 373–384, 2009.
[11]
R. H. Fahmy and M. A. Kassem, “Enhancement of famotidine dissolution rate through liquisolid tablets formulation: In vitro and in vivo evaluation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 3, pp. 993–1003, 2008.
[12]
S. A. Tayel, I. I. Soliman, and D. Louis, “Improvement of dissolution properties of Carbamazepine through application of the liquisolid tablet technique,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 1, pp. 342–347, 2008.
[13]
J. Staniforth, “Powder flow,” in Pharmaceutics: The Science of Dosage Form Design, M. E. Aulton, Ed., pp. 197–210, Churchill Livingstone, Longman group, Edinburg, UK, 2nd edition, 2002.
[14]
R. Shangraw, “Compressed tablets by direct compression,” in Pharmaceutical Dosage Forms: Tablets, H. A. Lieberman, L. Lachman, and J. B. Schwartz, Eds., pp. 195–245, Marcel Dekker, New York, NY, USA, 2nd edition, 1989.
[15]
British Pharmacopoeia, vol. 4, 2008.
[16]
A. Martin, P. Bustamante, and A. Chun, “Micromeritics,” in Martin’s Physical Pharmacy and Pharmaceutical Sciences, P. J. Sinko, Ed., pp. 533–560, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2006.
[17]
R. Shangraw, “Compressed tablets by direct compression,” in Pharmaceutical Dosage Forms: Tablets, H. A. Lieberman, L. Lachman, and J. B. Schwartz, Eds., pp. 195–246, Marcel Dekker, New York, NY, USA, 2nd edition, 1989.
[18]
M. Sivakranth, A. S. Althaf, and S. Rajasekhar, “Formulation and evaluation of oral fast dissolving tablets of sildenafil citrarte,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, supplement 2, pp. 112–121, 2011.