全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Buckysomes: New Nanocarriers for Anticancer Drugs

DOI: 10.1155/2013/390425

Full-Text   Cite this paper   Add to My Lib

Abstract:

Buckysomes, liposome-like vesicles comprised of dendritic C60 subunits that self-assemble into unilamellar vesicles, are unique nanovectors that have utility in drug delivery. We have prepared paclitaxel-embedded buckysomes (PEBs) and examined biodistriubition profiles with commercially available formulations of the drug. As compared to Abraxane, an albumin-bound formulation of paclitaxel, PEBs showed higher tissue accumulation in the liver and the kidney at 45 and 60 minutes and in the lungs at 30 minutes, making them suitable drug-delivery carriers for short-term therapy to the mentioned organs. These buckysomes can be further functionalized to specifically deliver paclitaxel to the tumor site. 1. Introduction Paclitaxel is a very potent anticancer drug that has been used since 1967 to treat breast, ovarian, and lung cancer, as well as advanced forms of Kaposi’s sarcoma [1]. Paclitaxel is a hydrophobic drug (solubility ~0.3?μg/mL) [2] that was previously administered via dissolution in Cremophor EL (polyoxyethylated castor oil) and dehydrated alcohol. However, the castor oil proved to be toxic [3, 4], so other alternatives for paclitaxel delivery were investigated, such as the use of nanoscale carrier vectors [2, 5, 6]. Among the different types of nanocarriers, liposomes have received a lot of attention and have proven to be very good carriers of drugs and/or contrast agents [7]. Paclitaxel-embedded buckysomes have the potential for delivering the hydrophobic drug directly to tumor sites. The buckysomes are self-assembled structures of the monomer AF-1, a modified water soluble fullerene that contains 18 carboxylic acid groups and 5 didodecyl malonate chains around the C60 fullerene (Figure 1). This unique functionalization permits the creation of buckysome structures that might offer advantages over traditional phospholipid liposomes as nanovectors. The buckysomes are formulated so they have a dense hydrophobic region, making them ideal for embedding hydrophobic molecules, such as paclitaxel. Liposomes are mostly suitable for carrying a hydrophilic payload in their hydrophilic compartment and less suitable for hydrophobic materials. Another advantage of using buckysomes is the lack of organic solvents during their formation steps as well as their ease of preparation. Figure 1: Chemical structure of the amphiphilic fullerene monomer AF-1. AF-1 has a molecular weight of 5022, a length of 3.5?nm, and a width of 2.3?nm. Previous studies in our group report the synthesis and characterization of buckysome nanovectors for hydrophobic molecule delivery [8].

References

[1]  C. M. Spencer and D. Faulds, “Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer,” Drugs, vol. 48, no. 5, pp. 794–847, 1994.
[2]  L. M. Han, J. Guo, L. J. Zhang, Q. S. Wang, and X. L. Fang, “Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with Pluronic P123,” Acta Pharmacologica Sinica, vol. 27, no. 6, pp. 747–753, 2006.
[3]  R. B. Weiss, R. C. Donehower, P. H. Wiernik et al., “Hypersensitivity reactions from taxol,” Journal of Clinical Oncology, vol. 8, no. 7, pp. 1263–1268, 1990.
[4]  R. T. Dorr, “Pharmacology and toxicology of Cremophor EL diluent,” The Annals of Pharmacotherapy, vol. 28, 5, pp. S11–S14, 1994.
[5]  M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol. 5, no. 3, pp. 161–171, 2005.
[6]  V. P. Torchilin, “Multifunctional nanocarriers,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1532–1555, 2006.
[7]  P. Crosasso, M. Ceruti, P. Brusa, S. Arpicco, F. Dosio, and L. Cattel, “Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes,” Journal of Controlled Release, vol. 63, no. 1-2, pp. 19–30, 2000.
[8]  R. Partha, M. Lackey, A. Hirsch, S. W. Casscells, and J. L. Conyers, “Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures,” Journal of Nanobiotechnology, vol. 5, article 6, 2007.
[9]  R. Partha, L. R. Mitchell, J. L. Lyon, P. P. Joshi, and J. L. Conyers, “Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery,” ACS Nano, vol. 2, no. 9, pp. 1950–1958, 2008.
[10]  M. Brettreich, S. Burghardt, C. Bottcher, T. Bayerl, S. Bayerl, and A. Hirsch, “Globular amphiphiles: membrane-forming hexaaducts of C (60),” Angewandte Chemie International Edition, vol. 39, no. 10, pp. 1845–1848, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133