The zalcitabine (ddC) has been extensively used in the treatment of HIV patients due to its antiretroviral activity. The quality control of this active principle in medications is of outstanding importance to public health. The principal objective of the current study was the development of an alternative analytical methodology for the zalcitabine determination using a voltammetric process. The zalcitabine gives a reduction peak (at ?V versus Ag/AgCl) at the hanging mercury drop electrode (HMDE). The differential pulse voltammetric response is evaluated with respect to the scan rate (20?mV/s), pulse amplitude (50?mV), support electrolyte (Clark-Lubs buffer), pH (2.0), and other variables. The response is linear over the 10.0 to 28.0?mg/L (47 to 133?μM) concentration range, and the detection limit is 2.08?mg/L. The validation of this method was realized using a governmental Brazilian document (Inmetro, 2007) and the results are reported for medication drugs. 1. Introduction The Food and Drug Administration has approved the AIDS drug zalcitabine, commonly known as 2′-3′-dideoxycytidine (ddC). It is the third drug licensed specifically for use in treating the human immunodeficiency virus, the cause of AIDS. Zalcitabine was approved for use in combination with the first approved AIDS drug, zidovudine (or AZT), as a treatment option for adult patients with advanced HIV infection who show signs of clinical or immunological deterioration. Early clinical trial data have shown that increases in CD4 cells (immune cells) were somewhat greater and more sustained in patients treated with the combination of zalcitabine and zidovudine than in those who received zidovudine alone as initial therapy. An increase in CD4 cells is believed to indicate that the body’s disease-fighting capability has been at least transiently enhanced. Zalcitabine is a derivative of the naturally existing deoxycytidine, made by replacing the hydroxyl group in position 3′ with a hydrogen group. It is phosphorylated in T cells and other HIV target cells into its active triphosphate form, ddCTP. This active metabolite works as a substrate for HIV reverse transcriptase, and also by incorporation into the viral DNA, hence terminating the chain elongation due to the missing hydroxyl group. Since zalcitabine is a nucleoside, reverse transcriptase inhibitor (NRTI), it possesses activity only against retroviruses [1, 2]. Zalcitabine has a very high oral absorption rate of over 80%. It is predominantly eliminated by the renal route, with a half-life of 2 hours [3, 4]. Zalcitabine (Figure 1(a)) is an
References
[1]
E. De Clercq, “Antiviral drugs: current state of the art,” Journal of Clinical Virology, vol. 22, no. 1, pp. 73–89, 2001.
[2]
E. De Clercq, “Antiviral drugs in current clinical use,” Journal of Clinical Virology, vol. 30, no. 2, pp. 115–133, 2004.
[3]
J. W. Beach, “Chemotherapeutic agents for human immunodeficiency virus infection: mechanism of action, pharmacokinetics, metabolism, and adverse reactions,” Clinical Therapeutics, vol. 20, no. 1, pp. 2–25, 1998.
[4]
“Martindale,” in The Complete Drug Reference, K. Parfitt, Ed., pp. 629–630, Pharmaceutical Press, 32nd edition, 1999.
[5]
B. Uslu, A. Sava?er, S. A. ?zkan, and Y. ?zkan, “Validated RP-HPLC method for the assay of zalcitabine in drug substance, formulated products and human serum,” Pharmazie, vol. 59, no. 8, pp. 604–607, 2004.
[6]
S. Notari, A. Bocedi, G. Ippolito et al., “Simultaneous determination of 16 anti-HIV drugs in human plasma by high-performance liquid chromatography,” Journal of Chromatography B, vol. 831, no. 1-2, pp. 258–266, 2006.
[7]
M. Xu, C. A. White, and M. G. Bartlett, “Simultaneous determination of zalcitabine and stavudine in maternal plasma, amniotic fluid, placental, and fetal tissues using reversed phase on silica liquid chromatography,” Journal of Liquid Chromatography and Related Technologies, vol. 31, no. 4, pp. 482–496, 2008.
[8]
M. Xu, C. A. White, and M. G. Bartlett, “Simultaneous determination of zalcitabine and stavudine in maternal plasma, amniotic fluid, placental, and fetal tissues using reversed phase on silica liquid chromatography/tandem mass spectrometry,” Journal of Liquid Chromatography and Related Technologies, vol. 32, no. 5, pp. 680–697, 2009.
[9]
A. Checa, R. Oliver, J. Saurina, and S. Hernández-Cassou, “Flow-injection spectrophotometric determination of reverse transcriptase inhibitors used for acquired immuno deficiency syndrome (AIDS) treatment. Focus on strategies for dealing with the background components,” Analytica Chimica Acta, vol. 572, no. 1, pp. 155–164, 2006.
[10]
B. Dogan, B. Uslu, S. Suzen, and S. A. Ozkan, “Electrochemical evaluation of nucleoside analogue lamivudine in pharmaceutical dosage forms and human serum,” Electroanalysis, vol. 17, no. 20, pp. 1886–1894, 2005.
[11]
K. C. Leandro, J. C. Moreira, and P. A. M. Farias, “Determination of zidovudine in pharmaceuticals by differential pulse voltammetry,” Analytical Letters, vol. 43, no. 12, pp. 1951–1957, 2010.
[12]
C. Teijeiro and D. Marin, “Electrochemical behaviour of the antineoplastic agent cytarabine,” Journal of Electroanalytical Chemistry, vol. 316, no. 1-2, pp. 119–131, 1991.
[13]
Inmetro. Orienta??o sobre Valida??o de Métodos de Ensaios Químicos: DOQ—CGCRE—008. Revis?o 02. Rio de Janeiro, Brazil, 2007.
[14]
J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, Ellis Horwood Limited, England, UK, 2 edition, 1989.
[15]
A. A. Castro, R. Q. Aucélio, N. A. Rey, E. M. Miguel, and P. A. M. Farias, “Determination of the antiretroviral drug nevirapine in diluted alkaline electrolyte by adsorptive stripping voltammetry at the mercury film electrode,” Combinatorial Chemistry and High Throughput Screening, vol. 14, no. 1, pp. 22–27, 2011.
[16]
A. A. Castro, M. V. N. de Souza, N. A. Rey, and P. A. M. Farias, “Determination of efavirenz in diluted alkaline electrolyte by cathodic adsorptive stripping voltammetry at the mercury film electrode,” Journal of the Brazilian Chemical Society, vol. 22, no. 9, pp. 1662–1668, 2011.
[17]
P. A. M. Farias, A. A. Castro, and A. I. P. Cordoves, “Ultratrace determination of the antiretroviral drug lamivudine in diluted alkaline electrolyte by adsorptive stripping voltammetry,” ECS Transactions, vol. 43, no. 1, pp. 267–287, 2012.
[18]
P. A. M. Farias, A. A. Castro, and A. I. P. Cordoves, “Didanosine determination in diluted alkaline electrolyte by adsorptive stripping voltammetry at the mercury film electrode,” Journal of Electrochemical Science and Engineering, vol. 2, no. 3, pp. 133–142, 2012.