全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum Dot-Loaded Liposomes to Evaluate the Behavior of Drug Carriers after Oral Administration

DOI: 10.1155/2013/848275

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed submicron-sized liposomes modified with a mucoadhesive polymer to enhance peptide drug absorption after oral administration. Liposomal behavior in the gastrointestinal tract is a critical factor for effective peptide drug delivery. The purpose of this study was to prepare quantum dot- (QD-) loaded submicron-sized liposomes and examine liposomal behavior in the body after oral administration using in vivo fluorescence imaging. Two types of CdSe/CdZnS QDs with different surface properties were used: hydrophobic (unmodified) QDs and hydrophilic QDs with glutathione (GSH) surface modifications. QD- and GSH-QD-loaded liposomes were prepared by a thin film hydration method. Transmission electron microscopy revealed that QDs were embedded in the liposomal lipid bilayer. Conversely, GSH-QDs were present in the inner aqueous phase. Some of the GSH-QDs were electrostatically associated with the lipid membrane of stearylamine-bearing cationic liposomes. QD-loaded liposomes were detected in Caco-2 cells after exposure to the liposomes, and these liposomes were not toxic to the Caco-2 cells. Furthermore, we evaluated the in vivo bioadhesion and intestinal penetration of orally administered QD-loaded liposomes by observing the intestinal segment using confocal laser scanning microscopy. 1. Introduction Liposomes are a very attractive drug delivery system because they are physically and chemically well-characterized structures that can be delivered through almost all routes of administration and are biocompatible [1–3]. We have developed a submicron-sized (100–200?nm) mucoadhesive liposomal system by modifying the liposome surface with a mucoadhesive polymer such as chitosan to achieve an oral peptide formulation [4, 5]. The effectiveness of polymer-modified liposomes was confirmed by the enhanced and prolonged pharmacological effect of peptide drugs such as insulin, which was orally administered in a polymer-coated liposomal form to rats. Therefore, it is important to characterize the mucoadhesive properties of oral liposomal systems in vivo based on liposomal behavior in the body [6]. In a previous study, we examined the mucosal layer of the rat intestine to detect organic dye-labeled liposomes by confocal laser scanning microscopy (CLSM) after administering these particulate systems [4]. In in vivo experiments, near-infrared (NIR) optical imaging is a powerful tool for real-time observation of the dynamic behavior of liposomes because it is a minimally invasive, nonionizing method that permits sensitive deep tissue imaging [7, 8]. However,

References

[1]  D. B. Fenske and P. R. Cullis, “Liposomal nanomedicines,” Expert Opinion on Drug Delivery, vol. 5, no. 1, pp. 25–44, 2008.
[2]  M. M. Bailey and C. J. Berkland, “Nanoparticle formulations in pulmonary drug delivery,” Medicinal Research Reviews, vol. 29, no. 1, pp. 196–212, 2009.
[3]  V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nature Reviews Drug Discovery, vol. 4, no. 2, pp. 145–160, 2005.
[4]  H. Takeuchi, Y. Matsui, H. Sugihara, H. Yamamoto, and Y. Kawashima, “Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs,” International Journal of Pharmaceutics, vol. 303, no. 1-2, pp. 160–170, 2005.
[5]  H. Takeuchi, H. Yamamoto, and Y. Kawashima, “Mucoadhesive nanoparticulate systems for peptide drug delivery,” Advanced Drug Delivery Reviews, vol. 47, no. 1, pp. 39–54, 2001.
[6]  H. Takeuchi, J. Thongborisute, Y. Matsui, H. Sugihara, H. Yamamoto, and Y. Kawashima, “Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1583–1594, 2005.
[7]  K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Advanced Drug Delivery Reviews, vol. 57, no. 8, pp. 1087–1108, 2005.
[8]  R. Reul, N. Tsapis, H. Hillaireau et al., “Near infrared labeling of PLGA for in vivo imaging of nanoparticles,” Polymer Chemistry, vol. 3, no. 3, pp. 694–702, 2012.
[9]  V. Saxena, M. Sadoqi, and J. Shao, “Degradation kinetics of indocyanine green in aqueous solution,” Journal of Pharmaceutical Sciences, vol. 92, no. 10, pp. 2090–2097, 2003.
[10]  X. Michalet, F. F. Pinaud, L. A. Bentolila et al., “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science, vol. 307, no. 5709, pp. 538–544, 2005.
[11]  W. T. Al-Jamal, K. T. Al-Jamal, B. Tian et al., “Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo,” ACS Nano, vol. 2, no. 3, pp. 408–418, 2008.
[12]  B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, 2002.
[13]  J. Pan, D. Wan, and J. Gong, “PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging,” Chemical Communications, vol. 47, no. 12, pp. 3442–3444, 2011.
[14]  T. Jin, F. Fujii, Y. Komai, J. Seki, A. Seiyama, and Y. Yoshioka, “Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging,” International Journal of Molecular Sciences, vol. 9, no. 10, pp. 2044–2061, 2008.
[15]  D. K. Tiwari, S.-I. Tanaka, Y. Inouye, K. Yoshizawa, T. M. Watanabe, and T. Jin, “Synthesis and characterization of anti-HER2 antibody conjugated CdSe/CdZnS quantum dots for fluorescence imaging of breast cancer cells,” Sensors, vol. 9, no. 11, pp. 9332–9354, 2009.
[16]  V. Sigot, D. J. Arndt-Jovin, and T. M. Jovin, “Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes,” Bioconjugate Chemistry, vol. 21, no. 8, pp. 1465–1472, 2010.
[17]  A. Makhlof, S. Fujimoto, Y. Tozuka, and H. Takeuchi, “In vitro and in vivo evaluation of WGA-carbopol modified liposomes as carriers for oral peptide delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 2, pp. 216–224, 2011.
[18]  B. Tian, W. T. Al-Jamal, K. T. Al-Jamal, and K. Kostarelos, “Doxorubicin-loaded lipid-quantum dot hybrids: surface topography and release properties,” International Journal of Pharmaceutics, vol. 416, no. 2, pp. 443–447, 2011.
[19]  A. M. Mohs, H. Duan, B. A. Kairdolf, A. M. Smith, and S. Nie, “Proton-resistant quantum dots: stability in gastrointestinal fluids and implications for oral delivery of nanoparticle agents,” Nano Research, vol. 2, no. 6, pp. 500–508, 2009.
[20]  M. Murata, K. Nakano, K. Tahara, Y. Tozuka, and H. Takeuchi, “Pulmonary delivery of elcatonin using surface-modified liposomes to improve systemic absorption: polyvinyl alcohol with a hydrophobic anchor and chitosan oligosaccharide as effective surface modifiers,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 80, no. 2, pp. 340–346, 2012.
[21]  T. Fujisawa, H. Miyai, K. Hironaka, et al., “Liposomal diclofenac eye drop formulations targeting the retina: formulation stability improvement using surface modification of liposomes,” International Journal of Pharmaceutics, vol. 436, no. 1-2, pp. 564–567, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133