An attempt to find pharmacological therapies to treat stroke patients and minimize the extent of cell death has seen the failure of dozens of clinical trials. As a result, stroke/cerebral ischemia is the leading cause of lasting adult disability. Stroke-induced cell death occurs due to an excess release of glutamate. As a consequence to this, a compensatory increased release of GABA occurs that results in the subsequent internalization of synaptic GABAA receptors and spillover onto perisynaptic GABAA receptors, resulting in increased tonic inhibition. Recent studies show that the brain can engage in a limited process of neural repair after stroke. Changes in cortical sensory and motor maps and alterations in axonal structure are dependent on patterned neuronal activity. It has been assumed that changes in neuronal excitability underlie processes of neural repair and remapping of cortical sensory and motor representations. Indeed, recent evidence suggests that local inhibitory and excitatory currents are altered after stroke and modulation of these networks to enhance excitability during the repair phase can facilitate functional recovery after stroke. More specifically, dampening tonic GABA inhibition can afford an early and robust improvement in functional recovery after stroke. 1. -Aminobutyric Acid (GABA) GABA is the major inhibitory neurotransmitter within the mammalian brain. Twenty to 50% of all synapses within the CNS use GABA as a neurotransmitter, mediating both fast and slow inhibitory synaptic transmission [1]. GABA is an endogenous ligand for the GABAA, GABAB, and GABAC receptors [2], and these receptor subtypes have been classified according to differences in both structure and pharmacology. GABAARs are ligand-gated chloride channels [2, 3] formed from 5 subunits arranged around a central ion pore. At least nineteen mammalian genes encoding for the various GABAAR subunits exist: , , , δ, ε, φ, π, and , with slice variants also contributing to variations in receptor functions [4–9]. The most common subunit combinations are believed to be composed of 2α, 2β, and γ, with the γ-subunit being able to be substituted for either an ε- or a δ-subunit [7–9]. Depolarization of inhibitory interneurons produces a phasic release of GABA and inhibition of postsynaptic neurons. Extrasynaptic GABAAR’s respond to ambient levels of GABA present in the extracellular space to regulate baseline pyramidal neuron excitability and show reduced desensitization remaining active for long periods of time [10]. Tonic GABAAR’s in the hippocampus and cortex contain either
References
[1]
W. Sieghart, “Structure and pharmacology of γ-aminobutyric acid(A) receptor subtypes,” Pharmacological Reviews, vol. 47, no. 2, pp. 181–234, 1995.
[2]
M. Chebib and G. A. R. Johnston, “The “ABC” of GABA receptors: a brief review,” Clinical and Experimental Pharmacology and Physiology, vol. 26, no. 11, pp. 937–940, 1999.
[3]
C. D'Hulst, J. R. Atack, and R. F. Kooy, “The complexity of the GABAA receptor shapes unique pharmacological profiles,” Drug Discovery Today, vol. 14, no. 17-18, pp. 866–875, 2009.
[4]
R. L. Macdonald and R. W. Olsen, “GABAA receptor channels,” Annual Review of Neuroscience, vol. 17, pp. 569–602, 1994.
[5]
R. W. Olsen and W. Sieghart, “International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update,” Pharmacological Reviews, vol. 60, no. 3, pp. 243–260, 2008.
[6]
R. W. Olsen and W. Sieghart, “GABAA receptors: subtypes provide diversity of function and pharmacology,” Neuropharmacology, vol. 56, no. 1, pp. 141–148, 2009.
[7]
N. P. Barrera, J. Betts, H. You et al., “Atomic force microscopy reveals the stoichiometry and subunit arrangement of the α4β3δ GABAA receptor,” Molecular Pharmacology, vol. 73, no. 3, pp. 960–967, 2008.
[8]
P. J. Whiting, “The GABAA receptor gene family: new opportunities for drug development,” Current Opinion in Drug Discovery and Development, vol. 6, no. 5, pp. 648–657, 2003.
[9]
P. J. Whiting, “GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery?” Drug Discovery Today, vol. 8, no. 10, pp. 445–450, 2003.
[10]
J. Glykys and I. Mody, “Activation of GABAA receptors: views from outside the synaptic cleft,” Neuron, vol. 56, no. 5, pp. 763–770, 2007.
[11]
J. Glykys and I. Mody, “Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABAA receptor α5 subunit-deficient mice,” Journal of Neurophysiology, vol. 95, no. 5, pp. 2796–2807, 2006.
[12]
K. R. Drasbek and K. Jensen, “THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex,” Cerebral Cortex, vol. 16, no. 8, pp. 1134–1141, 2006.
[13]
M. C. Walker and A. Semyanov, “Regulation of excitability by extrasynaptic GABAA receptors,” Results and Problems in Cell Differentiation, vol. 44, pp. 29–48, 2008.
[14]
J. R. Atack, P. J. Bayley, G. R. Seabrook, K. A. Wafford, R. M. McKernan, and G. R. Dawson, “L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors,” Neuropharmacology, vol. 51, no. 6, pp. 1023–1029, 2006.
[15]
N. Collinson, F. M. Kuenzi, W. Jarolimek et al., “Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor,” Journal of Neuroscience, vol. 22, no. 13, pp. 5572–5580, 2002.
[16]
G. R. Dawson, K. A. Maubach, N. Collinson et al., “An inverse agonist selective for α5 subunit-containing GABA A receptors enhances cognition,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 3, pp. 1335–1345, 2006.
[17]
F. Crestani, R. Keist, J. M. Fritschy et al., “Trace fear conditioning involves hippocampal α5 GABAA receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8980–8985, 2002.
[18]
S. Keros and J. J. Hablitz, “Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex,” Journal of Neurophysiology, vol. 94, no. 3, pp. 2073–2085, 2005.
[19]
D. Belelli, N. L. Harrison, J. Maguire, R. L. Macdonald, M. C. Walker, and D. W. Cope, “Extrasynaptic GABAa receptors: form, pharmacology, and function,” Journal of Neuroscience, vol. 29, no. 41, pp. 12757–12763, 2009.
[20]
I. Mody, “Distinguishing between GABAA receptors responsible for tonic and phasic conductances,” Neurochemical Research, vol. 26, no. 8-9, pp. 907–913, 2001.
[21]
A. N. Clarkson, B. S. Huang, S. E. MacIsaac, I. Mody, and S. T. Carmichael, “Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke,” Nature, vol. 468, no. 7321, pp. 305–309, 2010.
[22]
C. M. Borghese and R. A. Harris, “Studies of ethanol actions on recombinant δ-containing γ-aminobutyric acid type A receptors yield contradictory results,” Alcohol, vol. 41, no. 3, pp. 155–162, 2007.
[23]
K. A. Wafford, M. B. van Niel, Q. P. Ma et al., “Novel compounds selectively enhance δ subunit containing GABAA receptors and increase tonic currents in thalamus,” Neuropharmacology, vol. 56, no. 1, pp. 182–189, 2009.
[24]
D. P. Bright, M. Renzi, J. Bartram et al., “Profound desensitization by ambient GABA limits activation of δ-containing GABAA receptors during spillover,” Journal of Neuroscience, vol. 31, no. 2, pp. 753–763, 2011.
[25]
Y. S. Ng, J. Stein, M. Ning, and R. M. Black-Schaffer, “Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories,” Stroke, vol. 38, no. 8, pp. 2309–2314, 2007.
[26]
S. M. Lai, S. Studenski, P. W. Duncan, and S. Perera, “Persisting consequences of stroke measured by the stroke impact scale,” Stroke, vol. 33, no. 7, pp. 1840–1844, 2002.
[27]
B. H. Dobkin, “Training and exercise to drive poststroke recovery,” Nature Clinical Practice Neurology, vol. 4, no. 2, pp. 76–85, 2008.
[28]
B. H. Dobkin, “Strategies for stroke rehabilitation,” Lancet Neurology, vol. 3, no. 9, pp. 528–536, 2004.
[29]
S. T. Carmichael, “Cellular and molecular mechanisms of neural repair after stroke: making waves,” Annals of Neurology, vol. 59, no. 5, pp. 735–742, 2006.
[30]
R. J. Nudo, “Mechanisms for recovery of motor function following cortical damage,” Current Opinion in Neurobiology, vol. 16, no. 6, pp. 638–644, 2006.
[31]
M. A. Maldonado, R. P. Allred, E. L. Felthauser, and T. A. Jones, “Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats,” Neurorehabilitation and Neural Repair, vol. 22, no. 3, pp. 250–261, 2008.
[32]
M. Alonso-Alonso, F. Fregni, and A. Pascual-Leone, “Brain stimulation in poststroke rehabilitation,” Cerebrovascular Diseases, vol. 24, no. 1, supplement 1, pp. 157–166, 2007.
[33]
F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?” Lancet Neurology, vol. 5, no. 8, pp. 708–712, 2006.
[34]
G. F. Wittenberg and J. D. Schaechter, “The neural basis of constraint-induced movement therapy,” Current Opinion in Neurology, vol. 22, no. 6, pp. 582–588, 2009.
[35]
G. Hess, C. D. Aizenman, and J. P. Donoghue, “Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex,” Journal of Neurophysiology, vol. 75, no. 5, pp. 1765–1778, 1996.
[36]
P. Cicinelli, P. Pasqualetti, M. Zaccagnini, R. Traversa, M. Olivefi, and P. M. Rossini, “Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study,” Stroke, vol. 34, no. 11, pp. 2653–2658, 2003.
[37]
A. Citri and R. C. Malenka, “Synaptic plasticity: multiple forms, functions, and mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 18–41, 2008.
[38]
K. M. Jacobs and J. P. Donoghue, “Reshaping the cortical motor map by unmasking latent intracortical connections,” Science, vol. 251, no. 4996, pp. 944–947, 1991.
[39]
A. N. Clarkson, J. J. Overman, S. Zhong, R. Mueller, G. Lynch, and S. T. Carmichael, “AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke,” Journal of Neuroscience, vol. 31, no. 10, pp. 3766–3775, 2011.
[40]
J. M. Conner, A. A. Chiba, and M. H. Tuszynski, “The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury,” Neuron, vol. 46, no. 2, pp. 173–179, 2005.
[41]
J. W. Krakauer, “Motor learning: its relevance to stroke recovery and neurorehabilitation,” Current Opinion in Neurology, vol. 19, no. 1, pp. 84–90, 2006.
[42]
S. T. Carmichael, I. Archibeque, L. Luke, T. Nolan, J. Momiy, and S. Li, “Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex,” Experimental Neurology, vol. 193, no. 2, pp. 291–311, 2005.
[43]
R. P. Stroemer, T. A. Kent, and C. E. Hulsebosch, “Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats,” Stroke, vol. 29, no. 11, pp. 2381–2395, 1998.
[44]
E. MacDonald, H. van der Lee, D. Pocock et al., “A novel phosphodiesterase type 4 inhibitor, HT-0712, enhances rehabilitation-dependent motor recovery and cortical reorganization after focal cortical ischemia,” Neurorehabilitation and Neural Repair, vol. 21, no. 6, pp. 486–496, 2007.
[45]
A. N. Clarkson and S. T. Carmichael, “Cortical excitability and post-stroke recovery,” Biochemical Society Transactions, vol. 37, no. 6, pp. 1412–1414, 2009.
[46]
S. Schmidt, C. Bruehl, C. Frahm, C. Redecker, and O. W. Witte, “Age dependence of excitatory-inhibitorybalance following stroke,” Neurobiology of Aging. In press.
[47]
S. Schmidt, C. Redecker, C. Bruehl, and O. W. Witte, “Age-related decline of functional inhibition in rat cortex,” Neurobiology of Aging, vol. 31, no. 3, pp. 504–511, 2010.
[48]
N. Jaenisch, O. W. Witte, and C. Frahm, “Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia,” Stroke, vol. 41, no. 3, pp. e151–e159, 2010.
[49]
S. T. Carmichael, “Targets for neural repair therapies after stroke,” Stroke, vol. 41, no. 10, supplement, pp. S124–S126, 2010.
[50]
S. T. Carmichael, “Themes and strategies for studying the biology of stroke recovery in the poststroke epoch,” Stroke, vol. 39, no. 4, pp. 1380–1388, 2008.
[51]
J. J. Ohab, S. Fleming, A. Blesch, and S. T. Carmichael, “A neurovascular niche for neurogenesis after stroke,” Journal of Neuroscience, vol. 26, no. 50, pp. 13007–13016, 2006.
[52]
Z. G. Zhang and M. Chopp, “Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic,” The Lancet Neurology, vol. 8, no. 5, pp. 491–500, 2009.
[53]
J. Liauw, S. Hoang, M. Choi et al., “Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 10, pp. 1722–1732, 2008.
[54]
C. E. Brown, K. Aminoltejari, H. Erb, I. R. Winship, and T. H. Murphy, “In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites,” Journal of Neuroscience, vol. 29, no. 6, pp. 1719–1734, 2009.
[55]
C. Calautti and J. C. Baron, “Functional neuroimaging studies of motor recovery after stroke in adults: a review,” Stroke, vol. 34, no. 6, pp. 1553–1566, 2003.
[56]
R. M. Dijkhuizen, A. B. Singhal, J. B. Mandeville et al., “Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study,” Journal of Neuroscience, vol. 23, no. 2, pp. 510–517, 2003.
[57]
P. Lipton, “Ischemic cell death in brain neurons,” Physiological Reviews, vol. 79, no. 4, pp. 1431–1568, 1999.
[58]
P. Nicotera and S. A. Lipton, “Excitotoxins in neuronal apoptosis and necrosis,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 6, pp. 583–591, 1999.
[59]
R. D. Schwartz, X. Yu, M. R. Katzman, D. M. Hayden-Hixson, and J. M. Perry, “Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum,” Journal of Neuroscience, vol. 15, no. 1, pp. 529–539, 1995.
[60]
A. R. Green, A. H. Hainsworth, and D. M. Jackson, “GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke,” Neuropharmacology, vol. 39, no. 9, pp. 1483–1494, 2000.
[61]
R. D. Schwartz-Bloom and R. Sah, “γ-aminobutyric acid A neurotransmission and cerebral ischemia,” Journal of Neurochemistry, vol. 77, no. 2, pp. 353–371, 2001.
[62]
R. D. Schwartz-Bloom, K. A. Miller, D. A. Evenson, B. J. Crain, and J. V. Nadler, “Benzodiazepines protect hippocampal neurons from degeneration after transient cerebral ischemia: an ultrastructural study,” Neuroscience, vol. 98, no. 3, pp. 471–484, 2000.
[63]
B. Alicke and R. D. Schwartz-Bloom, “Rapid down-regulation of GABA(A) receptors in the gerbil hippocampus following transient cerebral ischemia,” Journal of Neurochemistry, vol. 65, no. 6, pp. 2808–2811, 1995.
[64]
A. N. Clarkson, J. Clarkson, D. M. Jackson, and I. A. Sammut, “Mitochondrial involvement in transhemispheric diaschisis following hypoxia-ischemia: clomethiazole-mediated amelioration,” Neuroscience, vol. 144, no. 2, pp. 547–561, 2007.
[65]
A. N. Clarkson, H. Liu, R. Rahman, D. M. Jackson, I. Appleton, and D. S. Kerr, “Clomethiazole: mechanisms underlying lasting neuroprotection following hypoxia-ischemia,” FASEB Journal, vol. 19, no. 8, pp. 1036–1038, 2005.
[66]
M. D. Ginsberg, “Neuroprotection for ischemic stroke: past, present and future,” Neuropharmacology, vol. 55, no. 3, pp. 363–389, 2008.
[67]
P. Lyden, A. Shuaib, K. Ng et al., “Clomethiazole acute stroke study in ischemic stroke (CLASS-I): final results,” Stroke, vol. 33, no. 1, pp. 122–128, 2002.
[68]
L. Cohen, B. Chaaban, and M. O. Habert, “Transient Improvement of aphasia with zolpidem,” New England Journal of Medicine, vol. 350, no. 9, pp. 949–950, 2004.
[69]
J. R. Inglefield, J. M. Perry, and R. D. Schwartz, “Postischemic inhibition of GABA reuptake by tiagabine slows neuronal death in the gerbil hippocampus,” Hippocampus, vol. 5, no. 5, pp. 460–468, 1995.
[70]
D. J. Cash and K. Subbarao, “Two desensitization processes of GABA receptor from rat brain. Rapid measurements of chloride ion flux using quench-flow techniques,” FEBS Letters, vol. 217, no. 1, pp. 129–133, 1987.
[71]
J. R. Huguenard and B. E. Alger, “Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons,” Journal of Neurophysiology, vol. 56, no. 1, pp. 1–18, 1986.
[72]
M. H. J. Tehrani and E. M. Barnes Jr., “Agonist-dependent internalization of γ-aminobutyric acid(A)/benzodiazepine receptors in chick cortical neurons,” Journal of Neurochemistry, vol. 57, no. 4, pp. 1307–1312, 1991.
[73]
Y. Ben-Ari, R. Khazipov, X. Leinekugel, O. Caillard, and J. L. Gaiarsa, “GABA(A), NMDA and AMPA receptors: a developmentally regulated “menage a trois”,” Trends in Neurosciences, vol. 20, no. 11, pp. 523–529, 1997.
[74]
M. M. McCarthy, A. P. Auger, and T. S. Perrot-Sinal, “Getting excited about GABA and sex differences in the brain,” Trends in Neurosciences, vol. 25, no. 6, pp. 307–312, 2002.
[75]
C. Redecker, H. J. Luhmann, G. Hagemann, J. M. Fritschy, and O. W. Witte, “Differential downregulation of GABA(A) receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations,” Journal of Neuroscience, vol. 20, no. 13, pp. 5045–5053, 2000.
[76]
C. Redecker, W. Wang, J. M. Fritschy, and O. W. Witte, “Widespread and long-lasting alterations in GABAA-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 12, pp. 1463–1475, 2002.
[77]
M. Que, K. Schiene, O. W. Witte, and K. Zilles, “Widespread up-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain,” Neuroscience Letters, vol. 273, no. 2, pp. 77–80, 1999.
[78]
A. Scimemi, A. Semyanov, G. Sperk, D. M. Kullmann, and M. C. Walker, “Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus,” Journal of Neuroscience, vol. 25, no. 43, pp. 10016–10024, 2005.
[79]
S. J. Mitchell and R. A. Silver, “Shunting inhibition modulates neuronal gain during synaptic excitation,” Neuron, vol. 38, no. 3, pp. 433–445, 2003.
[80]
R. M. McKernan and P. J. Whiting, “Which GABAA-receptor subtypes really occur in the brain?” Trends in Neurosciences, vol. 19, no. 4, pp. 139–143, 1996.
[81]
M. Farrant and Z. Nusser, “Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors,” Nature Reviews Neuroscience, vol. 6, no. 3, pp. 215–229, 2005.
[82]
N. C. Saxena and R. L. Macdonald, “Assembly of GABA(A) receptor subunits: role of the δ subunit,” Journal of Neuroscience, vol. 14, no. 11, pp. 7077–7086, 1994.
[83]
M. T. Bianchi and R. L. Macdonald, “Neurosteroids shift partial agonist activation of GABAA receptor channels from low- to high-efficacy gating patterns,” Journal of Neuroscience, vol. 23, no. 34, pp. 10934–10943, 2003.
[84]
S. Mertens, D. Benke, and H. Mohler, “GABAA receptor populations with novel subunit combinations and drug binding profiles identified in brain by α5- and δ-subunit-specific immunopurification,” Journal of Biological Chemistry, vol. 268, no. 8, pp. 5965–5973, 1993.
[85]
A. Baude, C. Bleasdale, Y. Dalezios, P. Somogyi, and T. Klausberger, “Immunoreactivity for the GABAA receptor α1 subunit, somatostatin and connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus,” Cerebral Cortex, vol. 17, no. 9, pp. 2094–2107, 2007.
[86]
C. Sun, W. Sieghart, and J. Kapur, “Distribution of α1, α4, γ2, and δ subunits of GABAA receptors in hippocampal granule cells,” Brain Research, vol. 1029, no. 2, pp. 207–216, 2004.
[87]
D. W. Cope, P. Wulff, A. Oberto et al., “Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor γ2 subunit,” Neuropharmacology, vol. 47, no. 1, pp. 17–34, 2004.
[88]
J. Liepert, “Motor cortex excitability in stroke before and after constraint-induced movement therapy,” Cognitive and Behavioral Neurology, vol. 19, no. 1, pp. 41–47, 2006.
[89]
A. Floyer-Lea, M. Wylezinska, T. Kincses, and P. M. Matthews, “Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning,” Journal of Neurophysiology, vol. 95, no. 3, pp. 1639–1644, 2006.
[90]
R. M. Lazar, B. F. Fitzsimmons, R. S. Marshall et al., “Reemergence of stroke deficits with midazolam challenge,” Stroke, vol. 33, no. 1, pp. 283–285, 2002.
[91]
J. P. van der Zijden, P. van Eijsden, R. A. De Graaf, and R. M. Dijkhuizen, “1H/13C MR spectroscopic imaging of regionally specific metabolic alterations after experimental stroke,” Brain, vol. 131, no. 8, pp. 2209–2219, 2008.
[92]
C. M. Stinear, J. P. Coxon, and W. D. Byblow, “Primary motor cortex and movement prevention: where Stop meets Go,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 5, pp. 662–673, 2009.
[93]
J. W. Stinear and W. D. Byblow, “Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements,” Journal of Physiology, vol. 543, no. 1, pp. 307–316, 2002.