Polyphenols constitute a family of natural substances distributed widely in plant kingdom. These are produced as secondary metabolites by plants and so far 8000 representatives of this family have been identified. Recently, there is an increased interest in the polyphenols because of the evidence of their role in prevention of degenerative diseases such as neurodegenerative diseases, cancer, and cardiovascular diseases. Although a large number of drugs are available in the market for treatment of these diseases, however, the emphasis these days is on the exploitation of natural principles derived from plants. Most polyphenols show low in vivo bioavailability thus limiting their application for oral drug delivery. This low bioavailability could be associated with low aqueous solubility, first pass effect, metabolism in GIT, or irreversible binding to cellular DNA and proteins. Therefore, there is a need to devise strategies to improve oral bioavailability of polyphenols. Various approaches like nanosizing, self-microemulsifying drug delivery systems (SMEDDS), microencapsulation, complexation, and solid dispersion can be used to increase the bioavailability. This paper will highlight the various methods that have been employed till date for the solubility enhancement of various polyphenols so that a suitable drug delivery system can be formulated. 1. Introduction Naturally occurring active moieties have been used in therapy since ages. Currently 80% of the world’s population uses plant derived principles either directly or indirectly [1]. Certain examples of plant derived products employed as therapeutic agents are tannins, alkaloids, polyphenols, polysaccharides, essential oils, various extracts, and exudates. Lately, much research has been envisaged on polyphenols due to two main reasons. Firstly, these possess high spectrum of biological activities including antioxidant, anti-inflammatory, antibacterial, and antiviral and secondly, they are present in abundance in diet [2]. Polyphenols are found in many components of the human food including peanuts, dark chocolate, green and black tea, and turmeric. Extensive research in the past years and collected data shed light on certain physiological properties of plant polyphenols. These can slow the progression of certain cancers, neurodegenerative diseases, and diabetes and can reduce the risks of cardiovascular disease, thus highlighting the importance of the use of plant polyphenols as potential chemopreventive and anticancer agents in humans [3]. Many medicinal plants constitute polyphenols as active
References
[1]
V. Atul Bhattaram, U. Graefe, C. Kohlert, M. Veit, and H. Derendorf, “Pharmacokinetics and bioavailability of herbal medicinal products,” Phytomedicine, vol. 9, no. 3, pp. 1–33, 2002.
[2]
C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” The American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004.
[3]
A. Scalbert and G. Williamson, “Dietary intake and bioavailability of polyphenols,” Journal of Nutrition, vol. 130, no. 8, pp. 2073S–2085S, 2000.
[4]
E. Middleton Jr., C. Kandaswami, and T. C. Theoharides, “The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer,” Pharmacological Reviews, vol. 52, no. 4, pp. 673–751, 2000.
[5]
A. Scalbert, C. Manach, C. Morand, C. Rémésy, and L. Jiménez, “Dietary polyphenols and the prevention of diseases,” Critical Reviews in Food Science and Nutrition, vol. 45, no. 4, pp. 287–306, 2005.
[6]
G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison, “A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability,” Pharmaceutical Research, vol. 12, no. 3, pp. 413–420, 1995.
[7]
C. M. O'Driscoll and B. T. Griffin, “Biopharmaceutical challenges associated with drugs with low aqueous solubility-The potential impact of lipid-based formulations,” Advanced Drug Delivery Reviews, vol. 60, no. 6, pp. 617–624, 2008.
[8]
G. D. Stoner, C. Sardo, G. Apseloff et al., “Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days,” Journal of Clinical Pharmacology, vol. 45, no. 10, pp. 1153–1164, 2005.
[9]
C. H. Cottart, V. Nivet-Antoine, C. Laguillier-Morizot, and J. L. Beaudeux, “Resveratrol bioavailability and toxicity in humans,” Molecular Nutrition and Food Research, vol. 54, no. 1, pp. 7–16, 2010.
[10]
P. C. H. Hollman, J. M. P. van Trijp, M. N. C. P. Buysman et al., “Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man,” FEBS Letters, vol. 418, no. 1-2, pp. 152–156, 1997.
[11]
H. Meyer, A. Bolarinwa, G. Wolfram, and J. Linseisen, “Bioavailability of apigenin from apiin-rich parsley in humans,” Annals of Nutrition and Metabolism, vol. 50, no. 3, pp. 167–172, 2006.
[12]
I. Erlund, E. Meririnne, G. Alfthan, and A. Aro, “Human nutrition and metabolism: plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice,” Journal of Nutrition, vol. 131, no. 2, pp. 235–241, 2001.
[13]
H. Matsumoto, H. Inaba, M. Kishi, S. Tominaga, M. Hirayama, and T. Tsuda, “Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms,” Journal of Agricultural and Food Chemistry, vol. 49, no. 3, pp. 1546–1551, 2001.
[14]
X. Xu, H. J. Wang, P. A. Murphy, L. Cook, and S. Hendrich, “Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women,” Journal of Nutrition, vol. 124, no. 6, pp. 825–832, 1994.
[15]
Q. Shen, X. Li, D. Yuan, and W. Jia, “Enhanced oral bioavailability of daidzein by self-microemulsifying drug delivery system,” Chemical and Pharmaceutical Bulletin, vol. 58, no. 5, pp. 639–643, 2010.
[16]
H. Chen, C. Khemtong, X. Yang, X. Chang, and J. Gao, “Nanonization strategies for poorly water-soluble drugs,” Drug Discovery Today, vol. 16, no. 7-8, pp. 354–360, 2011.
[17]
R. T. Bonnecaze and D. R. Lloyd, Nanoparticle engineering processes: evaporative precipitation into aqueous solution (EPAS) and antisolvent precipitation to enhance the dissolution rates of poorly water soluble drugs [Ph.D. thesis], University of Texas, Austin, Tex, USA, 2004.
[18]
J. E. Kipp, “The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs,” International Journal of Pharmaceutics, vol. 284, no. 1-2, pp. 109–122, 2004.
[19]
S. K. Das, S. Roy, Y. Kalimuthu, J. Khanam, and A. Nanda, “Solid dispersions: an approach to enhance the bioavailability of poorly water-soluble drugs,” International Journal of Pharmacology and Pharmaceutical Technology, vol. 1, no. 1, pp. 37–46, 2012.
[20]
A. T. M. Serajuddln, “Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs,” Journal of Pharmaceutical Sciences, vol. 88, no. 10, pp. 1058–1066, 1999.
[21]
B. Sinha, R. H. Müller, and J. P. M?schwitzer, “Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size,” International Journal of Pharmaceutics, vol. 453, no. 1, pp. 126–141, 2013.
[22]
P. Balakrishnan, B. J. Lee, D. H. Oh et al., “Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS),” European Journal of Pharmaceutics and Biopharmaceutics, vol. 72, no. 3, pp. 539–545, 2009.
[23]
R. N. Gursoy and S. Benita, “Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs,” Biomedicine and Pharmacotherapy, vol. 58, no. 3, pp. 173–182, 2004.
[24]
M. N. Clifford, “Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden,” Journal of the Science of Food and Agriculture, vol. 79, no. 3, pp. 362–372, 1999.
[25]
F. Sosulski, K. Krygier, and L. Hogge, “Free, esterified, and insoluble-bound phenolic acids. 3: composition of phenolic acids in cereal and potato flours,” Journal of Agricultural and Food Chemistry, vol. 30, no. 2, pp. 337–340, 1982.
[26]
I. Lempereur, X. Rouau, and J. Abecassis, “Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions,” Journal of Cereal Science, vol. 25, no. 2, pp. 103–110, 1997.
[27]
M. Naczk and F. Shahidi, “Extraction and analysis of phenolics in food,” Journal of Chromatography A, vol. 1054, no. 1-2, pp. 95–111, 2004.
[28]
L. H. Yao, Y. M. Jiang, J. Shi et al., “Flavonoids in food and their health benefits,” Plant Foods for Human Nutrition, vol. 59, no. 3, pp. 113–122, 2004.
[29]
S. H. H?kkinen, S. O. K?renlampi, H. M. Mykk?nen, I. M. Heinonen, and A. R. T?rr?nen, “Ellagic acid content in berries: influence of domestic processing and storage,” European Food Research and Technology, vol. 212, no. 1, pp. 75–80, 2000.
[30]
N. Wang, Z. Y. Wang, S. L. Mo et al., “Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer,” Breast Cancer Research and Treatment, pp. 134–3, 2012.
[31]
C. Bell and S. Hawthorne, “Ellagic acid, pomegranate and prostate cancer—a mini review,” Journal of Pharmacy and Pharmacology, vol. 60, no. 2, pp. 139–144, 2008.
[32]
M. Boukharta, G. Jalbert, and A. Castonguay, “Biodistribution of ellagic acid and dose-related inhibition of lung tumorigenesis in A/J mice,” Nutrition and Cancer, vol. 18, no. 2, pp. 181–189, 1992.
[33]
A. González-Sarrías, J. C. Espín, F. A. Tomás-Barberán, and M. T. García-Conesa, “Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins,” Molecular Nutrition & Food Research, vol. 53, no. 6, pp. 686–698, 2009.
[34]
M. Larrosa, M. T. García-Conesa, J. C. Espín, and F. A. Tomás-Barberán, “Ellagitannins, ellagic acid and vascular health,” Molecular Aspects of Medicine, vol. 31, no. 6, pp. 513–539, 2010.
[35]
Y. Porat, A. Abramowitz, and E. Gazit, “Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism,” Chemical Biology and Drug Design, vol. 67, no. 1, pp. 27–37, 2006.
[36]
I. Bala, V. Bhardwaj, S. Hariharan, and M. N. V. R. Kumar, “Analytical methods for assay of ellagic acid and its solubility studies,” Journal of Pharmaceutical and Biomedical Analysis, vol. 40, no. 1, pp. 206–210, 2006.
[37]
B. Li, K. Harich, L. Wegiel, L. S. Taylor, and K. J. Edgar, “Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions,” Carbohydrate Polymers, vol. 92, no. 2, pp. 1443–1450, 2012.
[38]
A. H?ssig, W. X. Linag, H. Schwabl, and K. Stampfli, “Flavonoids and tannins: plant-based antioxidants with vitamin character,” Medical Hypotheses, vol. 52, no. 5, pp. 479–481, 1999.
[39]
J. F. Hammerstone, S. A. Lazarus, and H. H. Schmitz, “Procyanidin content and variation in some commonly consumed foods,” Journal of Nutrition, vol. 130, no. 8, pp. 2086S–2092S, 2000.
[40]
J. Macheix, A. Fleuriet, and J. Billot, Fruit Phenolics, CRC Press, Boca Raton, Fla, USA, 1990.
[41]
S. F. Price, P. J. Breen, M. Valladao, and B. T. Watson, “Cluster sun exposure and quercetin in Pinot noir grapes and wine,” The American Journal of Enology and Viticulture, vol. 46, no. 2, pp. 187–194, 1995.
[42]
J. V. Formica, “Review of the biology of quercetin and related bioflavonoids,” Food and Chemical Toxicology, vol. 33, no. 12, pp. 1061–1080, 1995.
[43]
A. T. Jan, M. R. Kamli, I. Murtaza, J. B. Singh, A. Ali, and Q. M. R. Haq, “Dietary flavonoid quercetin and associated health benefits—an overview,” Food Reviews International, vol. 26, no. 3, pp. 302–317, 2010.
[44]
P. G. Cadena, M. A. Pereira, R. Cordeiro et al., “Nanoencapsulation of quercetin and resveratrol into elastic liposomes,” Biochimica et Biophysica Acta, vol. 1828, no. 2, pp. 309–316, 2012.
[45]
L. Gao, G. Liu, X. Wang, F. Liu, Y. Xu, and J. Ma, “Preparation of a chemically stable quercetin formulation using nanosuspension technology,” International Journal of Pharmaceutics, vol. 404, no. 1-2, pp. 231–237, 2011.
[46]
B. C. Hancock, G. T. Carlson, D. D. Ladipo, B. A. Langdon, and M. P. Mullarney, “Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance,” International Journal of Pharmaceutics, vol. 241, no. 1, pp. 73–85, 2002.
[47]
B. Li, S. Konecke, K. Harich, L. Wegiel, L. S. Taylor, and K. J. Edgar, “Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability,” Carbohydrate Polymers, vol. 92, no. 2, pp. 2033–2040, 2012.
[48]
C. Jullian, L. Moyano, C. Ya?ez, and C. Olea-Azar, “Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study,” Spectrochimica Acta A, vol. 67, no. 1, pp. 230–234, 2007.
[49]
T. Higuchi and K. A. Connors, “Phase-solubility techniques,” Advances in Anaytical Chemistry and Instrumentation, vol. 4, no. 2, pp. 117–212, 1965.
[50]
H. King, “Phenolic compounds of commercial wheat germ,” Journal of Food Science, vol. 27, no. 5, pp. 446–454, 1962.
[51]
Y. Feng, C. McDonald, and B. Vick, “C-glycosylflavones from hard red spring wheat bran,” Cereal Chemistry, vol. 65, no. 6, pp. 452–456, 1988.
[52]
D. Patel, S. Shukla, and S. Gupta, “Apigenin and cancer chemoprevention: progress, potential and promise (review),” International Journal of Oncology, vol. 30, no. 1, pp. 233–245, 2007.
[53]
J. Zhang, D. Liu, Y. Huang, Y. Gao, and S. Qian, “Biopharmaceutics classification and intestinal absorption study of apigenin,” International Journal of Pharmaceutics, vol. 436, no. 1-2, pp. 311–317, 2012.
[54]
L. Al Shaal, R. Shegokar, and R. H. Müller, “Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation,” International Journal of Pharmaceutics, vol. 420, no. 1, pp. 133–140, 2011.
[55]
J. Zhang, Y. Huang, D. Liu, Y. Gao, and S. Qian, “Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement,” European Journal of Pharmaceutical Sciences, vol. 48, no. 4, pp. 740–747, 2013.
[56]
G. Buckton and A. E. Beezer, “The relationship between particle size and solubility,” International Journal of Pharmaceutics, vol. 82, no. 3, pp. R7–R10, 1992.
[57]
F. A. Tomás-Barberán and M. N. Clifford, “Flavanones, chalcones and dihydrochalcones-nature, occurrence and dietary burden,” Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 1073–1080, 2000.
[58]
I. Erlund, “Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology,” Nutrition Research, vol. 24, no. 10, pp. 851–874, 2004.
[59]
T. Tanaka, H. Makita, K. Kawabata et al., “Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin,” Carcinogenesis, vol. 18, no. 5, pp. 957–965, 1997.
[60]
M. Yang, T. Tanaka, Y. Hirose, T. Deguchi, H. Mori, and Y. Kawada, “Chemopreventive effects of diosmin and hesperidin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary-bladder carcinogenesis in MALE ICR mice,” International Journal of Cancer, vol. 73, no. 5, pp. 719–724, 1997.
[61]
F. V. So, N. Guthrie, A. F. Chambers, M. Moussa, and K. K. Carroll, “Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices,” Nutrition and Cancer, vol. 26, no. 2, pp. 167–181, 1996.
[62]
E. M. Choi and Y. H. Kim, “Hesperetin attenuates the highly reducing sugar-triggered inhibition of osteoblast differentiation,” Cell Biology and Toxicology, vol. 24, no. 3, pp. 225–231, 2008.
[63]
E. M. Galati, M. T. Montforte, S. Kirjavainen, A. M. Forestieri, A. Trovato, and M. M. Tripodo, “Biological effects of hesperidin, a citrus flavonoid. (note I): antiinflammatory and analgesic activity,” Farmaco, vol. 49, no. 11, pp. 709–712, 1994.
[64]
P. R. Mishra, L. A. Shaal, R. H. Müller, and C. M. Keck, “Production and characterization of Hesperetin nanosuspensions for dermal delivery,” International Journal of Pharmaceutics, vol. 371, no. 1-2, pp. 182–189, 2009.
[65]
M. Kakran, N. G. Sahoo, and L. Li, “Precipitation of poorly water-soluble antioxidant hesperetin for improved solubility and dissolution,” in Proceedings of the CHEMECA 2011: Engineering a Better World, pp. 1380–1390, Sydney Hilton Hotel, Sydney, Australia, September 2011.
[66]
G. le Gall, M. S. Dupont, F. A. Mellon et al., “Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits,” Journal of Agricultural and Food Chemistry, vol. 51, no. 9, pp. 2438–2446, 2003.
[67]
H. Wang, M. G. Nair, G. M. Strasburg, A. M. Booren, and J. I. Gray, “Antioxidant polyphenols from tart cherries (Prunus cerasus),” Journal of Agricultural and Food Chemistry, vol. 47, no. 3, pp. 840–844, 1999.
[68]
H. J. Heo, D. O. Kim, S. C. Shin, M. J. Kim, B. G. Kim, and D. H. Shin, “Effect of antioxidant flavanone, naringenin, from Citrus junos on neuroprotection,” Journal of Agricultural and Food Chemistry, vol. 52, no. 6, pp. 1520–1525, 2004.
[69]
S. Hirai, Y. I. Kim, T. Goto et al., “Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages,” Life Sciences, vol. 81, no. 16, pp. 1272–1279, 2007.
[70]
S. I. Kanno, A. Tomizawa, T. Hiura et al., “Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice,” Biological and Pharmaceutical Bulletin, vol. 28, no. 3, pp. 527–530, 2005.
[71]
M. H. Lee, S. Yoon, and J. O. Moon, “The flavonoid naringenin inhibits dimethylnitrosamine-induced liver damage in rats,” Biological and Pharmaceutical Bulletin, vol. 27, no. 1, pp. 72–76, 2004.
[72]
Y. Tozuka, J. Kishi, and H. Takeuchi, “Anomalous dissolution property enhancement of naringenin from spray-dried particles with α-glucosylhesperidin,” Advanced Powder Technology, vol. 21, no. 3, pp. 305–309, 2010.
[73]
T. Kometani, Y. Terada, T. Nishimura, H. Takii, and S. Okada, “Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides,” Bioscience, Biotechnology and Biochemistry, vol. 58, no. 11, pp. 1990–1994, 1994.
[74]
A. Cassidy, B. Hanley, and R. M. Lamuela-Raventos, “Isoflavones, lignans and stilbenes-origins, metabolism and potential importance to human health,” Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 1044–1062, 2000.
[75]
K. Reinli and G. Block, “Phytoestrogen content of foods—a compendium of literature values,” Nutrition and Cancer, vol. 26, no. 2, pp. 123–148, 1996.
[76]
J. Liggins, L. J. C. Bluck, S. Runswick, C. Atkinson, W. A. Coward, and S. A. Bingham, “Daidzein and genistein content of fruits and nuts,” Journal of Nutritional Biochemistry, vol. 11, no. 6, pp. 326–331, 2000.
[77]
S. Banerjee, Y. Li, Z. Wang, and F. H. Sarkar, “Multi-targeted therapy of cancer by genistein,” Cancer Letters, vol. 269, no. 2, pp. 226–242, 2008.
[78]
M. S. Anthony, T. B. Clarkson, and J. K. Williams, “Effects of soy isoflavones on atherosclerosis: potential mechanisms,” The American Journal of Clinical Nutrition, vol. 68, no. 6, pp. 1390S–1393S, 1998.
[79]
T. Uesugi, Y. Fukui, and Y. Yamori, “Beneficial effects of soybean isoflavone supplementation on bone metabolism and serum lipids in postmenopausal Japanese women: a four-week study,” Journal of the American College of Nutrition, vol. 21, no. 2, pp. 97–102, 2002.
[80]
H. K. Suk, Y. K. Sun, W. H. Kyoung et al., “Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery,” Archives of Pharmacal Research, vol. 30, no. 9, pp. 1138–1143, 2007.
[81]
X. Vitrac, J. P. Monti, J. Vercauteren, G. Deffieux, and J. M. Mérillon, “Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection,” Analytica Chimica Acta, vol. 458, no. 1, pp. 103–110, 2002.
[82]
K. M. Kasiotis, H. Pratsinis, D. Kletsas, and S. A. Haroutounian, “Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties,” Food and Chemical Toxicology, vol. 61, pp. 112–120, 2013.
[83]
B. Catalgol, S. Batirel, Y. Taga, and N. K. Ozer, “Resveratrol: French paradox revisited,” Frontiers in Pharmacology, vol. 3, article 141, 2012.
[84]
C. C. Udenigwe, V. R. Ramprasath, R. E. Aluko, and P. J. H. Jones, “Potential of resveratrol in anticancer and anti-inflammatory therapy,” Nutrition Reviews, vol. 66, no. 8, pp. 445–454, 2008.
[85]
A. Duvuri, The formulation of naturally-occurring polyphenolic nutraceutical agents using hot-melt extrusion [M.S. thesis], University of Rhode Island, Kingston, RI, USA, 2011.
[86]
X. P. Zhang, Y. Le, J. X. Wang, H. Zhao, and J. F. Chen, “Resveratrol nanodispersion with high stability and dissolution rate,” LWT-Food Science and Technology, vol. 50, no. 2, pp. 622–628, 2012.
[87]
M. L. Kuo, T. S. Huang, and J. K. Lin, “Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells,” Biochimica et Biophysica Acta, vol. 1317, no. 2, pp. 95–100, 1996.
[88]
A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, “Inhibition of human immunodeficiency virus type-1 integrase by curcumin,” Biochemical Pharmacology, vol. 49, no. 8, pp. 1165–1170, 1995.
[89]
V. P. Menon and A. R. Sudheer, “Antioxidant and anti-inflammatory properties of curcumin,” Advances in Experimental Medicine and Biology, vol. 595, pp. 105–125, 2007.
[90]
H. H. T?nnesen, M. Másson, and T. Loftsson, “Studies of curcumin and curcuminoids. XXVII: cyclodextrin complexation: solubility, chemical and photochemical stability,” International Journal of Pharmaceutics, vol. 244, no. 1-2, pp. 127–135, 2002.
[91]
R. A. Sharma, S. A. Euden, S. L. Platton et al., “Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance,” Clinical Cancer Research, vol. 10, no. 20, pp. 6847–6854, 2004.
[92]
M. Kakran, N. G. Sahoo, I. L. Tan, and L. Li, “Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods,” Journal of Nanoparticle Research, vol. 14, no. 3, article 757, 2012.
[93]
M. Mosharraf and C. Nystr?m, “The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs,” International Journal of Pharmaceutics, vol. 122, no. 1-2, pp. 35–47, 1995.
[94]
S. Onoue, H. Takahashi, Y. Kawabata et al., “Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability,” Journal of Pharmaceutical Sciences, vol. 99, no. 4, pp. 1871–1881, 2010.
[95]
P. Zhang, Y. Liu, N. Feng, and J. Xu, “Preparation and evaluation of self-microemulsifying drug delivery system of oridonin,” International Journal of Pharmaceutics, vol. 355, no. 1-2, pp. 269–276, 2008.
[96]
J. Cui, B. Yu, Y. Zhao et al., “Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems,” International Journal of Pharmaceutics, vol. 371, no. 1-2, pp. 148–155, 2009.