全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation of Enhanced Oil Recovery Using Dimensionless Groups in Wettability Modified Chalk and Sandstone Rocks

DOI: 10.1155/2014/430309

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper addresses enhanced oil recovery in chalk and sandstone rocks by CO2 injection, with different wettability, porosity, and permeability as well as injection rate and flooding conditions. Results indicate that an increase in Bond number has a positive effect on oil recovery whereas for capillary number, there is a limit in which recovery is improving. This limit is estimated when the pressure drop by viscous force is approximately equal to the threshold balance between capillary and gravity forces. A dimensionless group is proposed that combines the effect of capillarity, injection rate, permeability, and CO2 diffusion on the oil recovery. Recovery from all experiments in this study and reported data in the literature shows a satisfactory relationship with the proposed group. 1. Introduction CO2 flooding is the most widely used method for medium and light oil recovery in sandstone and carbonate reservoirs during the last decades [1, 2]. In the past five decades, there have been extensive laboratory studies, numerical simulations, and field applications of CO2 EOR processes [1, 3–6]. The mechanisms affecting the displacement of oil by CO2 injection include oil swelling, IFT (interfacial tension), and viscosity reduction as well as increasing the injectivity index due to solubility of CO2 in water and subsequent reaction of carbonic acid with the minerals [7–9]. For immiscible CO2 flow in porous media, displacement efficiency could depend on the wetting properties of the fluids, the rate of CO2 injection and oil production, the difference of oil and CO2 density, the viscosity ratio of fluids, and the oil and CO2 relative permabilities [7]. Miscible CO2 EOR reduces viscosity and CO2 can vaporize and extract intermediate hydrocarbons from the reservoir crude oil and/or condense to the oil for developing miscibility under certain pressures and temperatures [10]. Displacement efficiency for miscible CO2 flooding is also influenced by wetting properties of the rock, injection and production rates, density difference between oil and gas, viscosity ratio of fluids, and oil/CO2 relative permabilities [10]. Investigations in the laboratories and in the field [11–18] suggest the importance of the gas-oil gravity segregation in CO2 EOR. Kulkarni and Rao [16] presented the effect of important dimensionless groups on the final oil recovery obtained from a number of miscible and immiscible CO2 gravity drainage experiments. They stated that the main design parameters on a laboratory scale to evaluate the feasibility of gas injection depend on reservoir

References

[1]  G. Moritis, “EOR survey,” Oil and Gas Journal, vol. 104, pp. 37–57, 2006.
[2]  V. Alvarado and E. Manrique, “Enhanced oil recovery: an update review,” Energies, vol. 3, no. 9, pp. 1529–1575, 2010.
[3]  E. A. Chukwudeme and A. A. Hamouda, “Enhanced Oil Recovery (EOR) by miscible CO2 and water flooding of asphaltenic and non-asphaltenic oils,” Energies, vol. 2, no. 3, pp. 714–737, 2009.
[4]  A. A. Hamouda, E. A. Chukwudeme, and D. Mirza, “Investigating the effect of CO2 flooding on asphaltenic oil recovery and reservoir wettability,” Energy & Fuels, vol. 23, no. 2, pp. 1118–1127, 2009.
[5]  A. Werner, F. Behar, J. C. De Hemptinne, and E. Behar, “Thermodynamic properties of petroleum fluids during expulsion and migration from source rocks,” Organic Geochemistry, vol. 24, no. 10-11, pp. 1079–1095, 1996.
[6]  R. B. Grigg and D. S. Schecter, “State of the industry in CO2 floods,” in Proceedings of the SPE Annual Technical Conference and Exhibition, SPE 38849, San Antonio, Tex, USA, October 1997.
[7]  P. M. Jarrell, C. E. Fox, M. H. Stein, and S. L. Webb, Practical Aspects of CO2 Flooding, vol. 22 of SPE Monograph, Society of Petroleum Engineers, 2002.
[8]  L. W. Holm and V. A. Josendal, “Mechanisms of oil displacement by carbon dioxide,” Journal of Petroleum Technology, vol. 26, pp. 1427–1438, 1974.
[9]  F. M. Orr Jr., M. K. Silva, C. L. Lien, and M. T. Pelletier, “Laboratory experiments to evaluate field prospects for CO2 flooding,” Journal of Petroleum Technology, vol. 34, no. 4, pp. 888–898, 1982.
[10]  G. A. Rojas, T. Zhu, S. B. Dyer, S. Thomas, and S. M. F. Ali, “Scaled model studies of CO2 floods,” SPE Reservoir Engineering, vol. 6, no. 2, pp. 169–178, 1991.
[11]  J. Hagoort, “Oil recovery by gravity drainage,” Society of Petroleum Engineers Journal, vol. 20, no. 3, pp. 139–150, 1980.
[12]  I. Chatzis, A. Kantzas, and F. A. L. Dullien, “On the investigation of gravity-assisted inert gas injection using micromodels, long berea sandstone cores, and computer-assisted tomography,” in Proceedings of the SPE Annual Technical Conference and Exhibition (ATCE '88), SPE 18284, Houston, Tex, USA, October 1988.
[13]  W. J. da Sie and D. S. Guo, “Assessment of a vertical hydrocarbon miscible flood in the Westpem Nisku D reef,” SPE Reservoir Engineering, vol. 5, no. 2, pp. 8–17354, 1990.
[14]  D. N. Rao, S. C. Ayirala, M. M. Kulkarni, and A. P. Sharma, “Development of Gas Assisted Gravity (GAGD) process for improved light oil recovery,” in Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, SPE 89357, Tulsa, Okla, USA, April 2004.
[15]  M. Verlaan and P. Boerrigter, “Miscible gas-oil gravity drainage,” in Proceedings of the 1st International Oil Conference and Exhibition, SPE 10399, Cancun, Mexico, September 2006.
[16]  M. M. Kulkarni and D. N. Rao, “Characterization of operative mechanisms in gravity drainage field projects through dimensional analysis,” in Proceedings of the SPE Annual Technical Conference and Exhibition (ATCE '06), pp. 4512–4530, San Antonio, Tex, USA, September 2006.
[17]  P. S. Jadhawar and H. K. Sarma, “Scaling and sensitivity analysis of gas-oil gravity drainage EOR,” in Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE 115065, pp. 508–521, Perth, Australia, October 2008.
[18]  V. K. Bangla, F. Yau, and G. R. Hendricks, “Reservoir performance of a gravity stable vertical CO2 miscible flood: wolf camp reservoir,” in Proceedings of the 66th Annual Technical Conference and Exhibition, SPE 22898, Wellman Unit, 1991.
[19]  D. J. Wood, L. W. Lake, R. T. Johns, and V. Nunez, “A screening model for CO2 flooding and storage in Gulf Coast reservoirs based on dimensionless groups,” SPE Reservoir Evaluation and Engineering, vol. 11, no. 3, pp. 513–520, 2008.
[20]  J. J. Trivedi and T. Babadagli, “Efficiency of diffusion controlled miscible displacement in fractured porous media,” Transport in Porous Media, vol. 71, no. 3, pp. 379–394, 2008.
[21]  D. A. Hudgins, F. M. Liave, and F. T. H. Chung, “Nitrogen miscible displacement of light crude oil: a laboratory study,” SPE Reservoir Engineering Journal, vol. 5, no. 1, SPE 17372, pp. 100–106, 1990.
[22]  M. Nobakht, S. Moghadam, and Y. Gu, “Effects of viscous and capillary forces on CO2 enhanced oil recovery under reservior conditions,” Energy & Fuels, vol. 21, no. 6, pp. 3469–3476, 2007.
[23]  G. H. Darvish, Physical effects controlling mass transfer in matrix fracture system during CO2 injection into chalk fractured reservoirs [Ph.D. thesis], Norwegian University of Science and Technology, Trondheim, Norway, 2007.
[24]  F. A. L. Dullien, Porous Media—Fluid Transport and Pore Structure, Academic Press, San Diego, Calif, USA, 2nd edition, 1992.
[25]  A. Danesh, PVT and Phase Behaviour of Petroleum Reservoir Fluids, Elsevier Science, Amsterdam, The Netherlands, 1998.
[26]  G. L?voll, Y. Méheust, K. J. M?l?y, E. Aker, and J. Schmittbuhl, “Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study,” Energy, vol. 30, no. 6, pp. 861–872, 2005.
[27]  C. Marle, Multiphase Flow in Porous Media, Institut Fran?ais du Petrole (IFP) Publications, TECHNIP, Paris, France, 1981.
[28]  T. A. Renner, “Measurement and correlation of diffusion coefficients for CO2 and rich-gas applications,” SPE Reservoir Engineering, vol. 3, no. 2, pp. 517–523, 1988.
[29]  O. Helland and O. I. Frette, “Computation of fluid configurations and capillary pressures in mixed-wet 2d pore spaces from rock images,” in Proceedings of the International Conference on Water Resources (CMWR '10), J. Carrera, Ed., Barcelona, Spain, 2010.
[30]  V. A. Tabrizy, Investigated miscible CO2 flooding for enhancing oil recovery in wettability altered chalk and sandstone rock [Ph.D. thesis], University of Stavanger, Stavanger, Norway, 2012.
[31]  B. Rostami, R. Kharrat, M. Pooladi-Darvish, and C. Ghotbi, “Identification of fluid dynamics in forced gravity drainage using dimensionless groups,” Transport in Porous Media, vol. 83, no. 3, pp. 725–740, 2010.
[32]  M. Blunt, D. Zhou, and D. Fenwick, “Three-phase flow and gravity drainage in porous media,” Transport in Porous Media, vol. 20, no. 1-2, pp. 77–103, 1995.
[33]  N. Shahidzadeh-Bonn, A. Tournié, S. Bichon et al., “Effect of wetting on the dynamics of drainage in porous media,” Transport in Porous Media, vol. 56, no. 2, pp. 209–224, 2004.
[34]  A. Al-Rawajfeh, Modeling and simulation of CO2 release in multiple-effect distillers for seawater desalination [Ph.D. thesis], Martin-Luther-University Halle-Wittenberg, Halle, Germany, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133