Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases. 1. Introduction Aquaculture is a worldwide activity and considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. According to FAO, the supplies of fish, crustaceans, and molluscs from aquaculture increased from 3.9% of total production by weight in 1970 to 27.3% in 2000, and aquaculture is growing more rapidly than all other animal-food-producing sectors [1]. In Europe itself, it is estimated that aquaculture production will exceed 2.5 million tonnes by 2015 and reach 4 million tonnes by 2030 [1]. Aquaculture production is heavily dominated by China and other developing countries in the Asia Pacific region, which accounts for 89% by volume [2]. Intensification of aquaculture had led to the promotion of conditions that favor the development of a number of diseases and problems related to biofouling. Shrimp farming is an aquaculture business; that is, it exists in either a marine or freshwater environment, producing shrimp or prawns. Over the past five years, there have been major developments in shrimp farming. Diseases are primary constraint to the growth of many shrimp species, which are exposed to stressful conditions, adverse environmental conditions. Consequently, wide ranges of chemicals particularly antimicrobial agents are used in shrimp farming to prevent and to treat diseases. The usage of these antimicrobial agents has increased enormously
References
[1]
FAO, “The State of world fisheries and aquaculture,” 2002, http://www.fao.org/docrep/005/y7300e/y7300e00.htm.
[2]
FAO, “State of World Fisheries and Aquaculture, Food and Agricultural Organization of the United Nations,” 2008, http://www.fao.org/docrep/011/i0250e/i0250e00.htm.
[3]
SCAN, “Opinion of the Scientific Committee on Animal Nutrition on the criteria for assessing the safety of microorganisms resistant to antibiotics of human clinical and veterinary importance,” European Commission Health and Consumer Protection Directorate- General, 2003, http://ec.europa.eu/food/fs/sc/scan/out108_en.pdf.
[4]
R. Naylor and M. Burke, “Aquaculture and ocean resources: raising tigers of the sea,” Annual Review of Environment and Resources, vol. 30, pp. 185–218, 2005.
[5]
R. L. Naylor, J. Eagle, and W. L. Smith, “Salmon aquaculture in the Pacific Northwest: a global industry with local impacts,” Environment, vol. 45, no. 8, pp. 18–39, 2003.
[6]
R. L. Naylor, R. J. Goldburg, J. H. Primavera et al., “Effect of aquaculture on world fish supplies,” Nature, vol. 405, no. 6790, pp. 1017–1024, 2000.
[7]
R. Goldburg and R. Naylor, “Future seascapes, fishing, and fish farming,” Frontiers in Ecology and the Environment, vol. 3, no. 1, pp. 21–28, 2005.
[8]
A. B. Boxall, L. A. Fogg, P. A. Blackwell, P. Kay, E. J. Pemberton, and A. Croxfor, “Veterinary medicines in the environment,” Reviews of Environmental Contaminationand Toxicology, vol. 180, pp. 1–91, 2004.
[9]
K. Haya, L. E. Burridge, and B. D. Chang, “Environmental impact of chemical wastes produced by the salmon aquaculture industry,” ICES Journal of Marine Science, vol. 58, no. 2, pp. 492–496, 2000.
[10]
K. Grave, E. Lingaas, M. Bangen, and M. R?nning, “Surveillance of the overall consumption of antibacterial drugs in humans, domestic animals and farmed fish in Norway in 1992 and 1996,” Journal of Antimicrobial Chemotherapy, vol. 43, no. 2, pp. 243–252, 1999.
[11]
T. X. Le, Y. Munekage, and S. I. Kato, “Antibiotic resistance in bacteria from shrimp farming in mangrove areas,” Science of the Total Environment, vol. 349, no. 1–3, pp. 95–105, 2005.
[12]
T. X. Le and Y. Munekage, “Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam,” Marine Pollution Bulletin, vol. 49, no. 11-12, pp. 922–929, 2004.
[13]
T. M. L'abée-Lund and H. S?rum, “Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicida worldwide,” Microbial Drug Resistance, vol. 7, no. 3, pp. 263–272, 2001.
[14]
H. Sorum, F. M. Aarestrup, and D. C. Washington, “Antimicrobial drug resistance in fish pathogen,” in Antimicrobial Resistance in Bacteria of Animal Origin, pp. 213–223, American Society for Microbiology press, Washington, DC, USA, 2006.
[15]
F. J. Angulo, V. N. Nargund, and T. C. Chiller, “Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance,” Journal of Veterinary Medicine Series B, vol. 51, no. 8-9, pp. 374–379, 2004.
[16]
F. C. Cabello, “Antibiotics and aquaculture in Chile: implications for human and animal health,” Revista Medica de Chile, vol. 132, no. 8, pp. 1001–1006, 2004.
[17]
F. C. Cabello, “An analysis of their potential impact upon the environment, human and animal health in Chile,” Antibiotics and Aquaculture, vol. 17, pp. 1–16, 2003.
[18]
R. J. Goldburg, M. S. Elliot, and R. L. Naylor, “Marine Aquaculture in the United States: environmental impacts and policy options,” Tech. Rep., PEW Oceans Commission, Stanford, Calif, USA, 2001.
[19]
K. Grave, A. Markestad, and M. Bangen, “Comparison in prescribing patterns of antibacterial drugs in salmonid farming in Norway during the periods 1980–1988 and 1989–1994,” Journal of Veterinary Pharmacology and Therapeutics, vol. 19, no. 3, pp. 184–191, 1996.
[20]
J. E. Davies, M. C. Roberts, S. B. Levy, G. H. Miller, T. F. Brien, and F. C. Tenover, “Antimicrobial resistance: an ecological perspective,” A Report from the American Academy of Microbiology, American Academy of Microbiology, Washington, DC, USA, 1999.
[21]
C. J. Hunter, D. Karl, and M. Buckley, “Marine microbial diversity: the key to earth’s habitability,” A Report from the American Academy of Microbiology, Marine Microbial Diversity, San Francisco, Calif, USA; American Academy of Microbiology, Washington, DC, USA, 2005.
[22]
C. D. Miranda and R. Zemelman, “Antibiotic resistant bacteria in fish from the Concepción Bay, Chile,” Marine Pollution Bulletin, vol. 42, no. 11, pp. 1096–1102, 2001.
[23]
C. G. Lundin, “Global attempt to address shrimp disease,” Marine Environmental Paper 4, The World Bank, 1996.
[24]
L. F. Gibson, J. Woodworth, and A. M. George, “Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii,” Aquaculture, vol. 169, no. 1-2, pp. 111–120, 1998.
[25]
S. K. Nayak and S. C. Mukherjee, “Screening of gastrointestinal bacteria of Indian major carps for a candidate probiotic species for aquaculture practices,” Aquaculture Research, vol. 42, no. 7, pp. 1034–1041, 2011.
[26]
S. Rahman, S. N. Khan, M. N. Naser, and M. M. Karim, “Safety issues of isolated probiotic natured bacteria from Bangladesh coastal waters for controlling shrimp diseases,” Journal of Scientific Research, vol. 3, no. 3, pp. 659–668, 2011.
[27]
K. V. Lalitha and P. K. Surendran, “Bacterial microflora associated with farmed freshwater prawn Macrobrachium rosenbergii (de Man) and the aquaculture environment,” Aquaculture Research, vol. 35, no. 7, pp. 629–635, 2004.
[28]
M. Gullian, F. Thompson, and J. Rodriguez, “Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei,” Aquaculture, vol. 233, no. 1–4, pp. 1–14, 2004.
[29]
T. Defoirdt, N. Boon, P. Sorgeloos, W. Verstraete, and P. Bossier, “Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example,” Trends in Biotechnology, vol. 25, no. 10, pp. 472–479, 2007.
[30]
S. Rengpipat, W. Phianphak, S. Piyatiratitivorakul, and P. Menasveta, “Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth,” Aquaculture, vol. 167, no. 3-4, pp. 301–313, 1998.
[31]
F. N. Vieira, C. C. Buglione, J. P. L. Mouri?o et al., “Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi,” Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, vol. 62, no. 3, pp. 631–638, 2010.
[32]
J. L. Balcázar and T. Rojas-Luna, “Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against vibriosis in juvenile shrimp (Litopenaeus vannamei),” Current Microbiology, vol. 55, no. 5, pp. 409–412, 2007.
[33]
S. Das, P. S. Lyla, and S. Ajmal Khan, “Application of Streptomyces as a probiotic in the laboratory culture of Penaeus monodon (Fabricius),” Israeli Journal of Aquaculture, vol. 58, no. 3, pp. 198–204, 2006.
[34]
K. F. Liu, C. H. Chiu, Y. L. Shiu, W. Cheng, and C. H. Liu, “Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae,” Fish and Shellfish Immunology, vol. 28, no. 5-6, pp. 837–844, 2010.
[35]
X. Xie and F. Yang, “Interaction of white spot syndrome virus VP26 protein with actin,” Virology, vol. 336, no. 1, pp. 93–99, 2005.
[36]
H. Liu, P. Jiravanichpaisal, I. S?derh?ll, L. Cerenius, and K. S?derh?ll, “Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus,” Journal of Virology, vol. 80, no. 21, pp. 10365–10371, 2006.
[37]
D. F. Li, M. C. Zhang, H. J. Yang, Y. B. Zhu, and X. Xu, “Beta-intergrin mediates WSSV infection,” Virology, vol. 368, no. 1, pp. 122–132, 2007.
[38]
W. Luana, F. Li, B. Wang, X. Zhang, Y. Liu, and J. Xiang, “Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis,” Comparative Biochemistry and Physiology B, vol. 147, no. 3, pp. 482–491, 2007.
[39]
K. Wongprasert, P. Sangsuriya, A. Phongdara, and S. Senapin, “Cloning and characterization of a caspase gene from black tiger shrimp (Penaeus monodon)-infected with white spot syndrome virus (WSSV),” Journal of Biotechnology, vol. 131, no. 1, pp. 9–19, 2007.
[40]
T. H. T. Ma, S. H. K. Tiu, J. G. He, and S. M. Chan, “Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei: early gene down-regulation after WSSV infection,” Fish and Shellfish Immunology, vol. 23, no. 2, pp. 430–437, 2007.
[41]
Z. Y. Zhao, Z. X. Yin, X. P. Xu, S. P. Weng, X. Y. Rao, and Z. X. Dai, “A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-WSSV activity,” Journal of Virology, vol. 83, no. 1, pp. 347–356, 2009.
[42]
Y. C. Liu, F. H. Li, B. Dong et al., “Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis,” Molecular Immunology, vol. 44, no. 4, pp. 598–607, 2007.
[43]
M. Tonganunt, B. Nupan, M. Saengsakda et al., “The role of Pm-fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection,” Fish and Shellfish Immunology, vol. 25, no. 5, pp. 633–637, 2008.
[44]
K. Lei, F. Li, M. Zhang, H. Yang, T. Luo, and X. Xu, “Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense,” Developmental and Comparative Immunology, vol. 32, no. 7, pp. 808–813, 2008.
[45]
X. Zhang, C. Huang, and Q. Qin, “Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon,” Antiviral Research, vol. 61, no. 2, pp. 93–99, 2004.
[46]
M. M. Roux, A. Pain, K. R. Klimpel, and A. K. Dhar, “The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris),” Journal of Virology, vol. 76, no. 14, pp. 7140–7149, 2002.
[47]
Q. Zhang, F. Li, B. Wang et al., “The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: Cloning, distribution and expression,” Developmental and Comparative Immunology, vol. 31, no. 5, pp. 429–440, 2007.
[48]
T. Luo, X. Zhang, Z. Shao, and X. Xu, “PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon,” FEBS Letters, vol. 551, no. 1-3, pp. 53–57, 2003.
[49]
L. L. Chen, L. C. Lu, W. J. Wu, C. F. Lo, and W. P. Huang, “White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP),” Diseases of Aquatic Organisms, vol. 74, no. 3, pp. 171–178, 2007.
[50]
K. Sritunyalucksana, W. Wannapapho, C. F. Lo, and T. W. Flegel, “PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp,” Journal of Virology, vol. 80, no. 21, pp. 10734–10742, 2006.
[51]
W. Wu and X. Zhang, “Characterization of a Rab GTPase up-regulated in the shrimp Peneaus japonicus by virus infection,” Fish and Shellfish Immunology, vol. 23, no. 2, pp. 438–445, 2007.
[52]
F. Han and X. Zhang, “Characterization of a ras-related nuclear protein (Ran protein) up-regulated in shrimp antiviral immunity,” Fish and Shellfish Immunology, vol. 23, no. 5, pp. 937–944, 2007.
[53]
M. Tonganunt, A. Phongdara, W. Chotigeat, and K. Fujise, “Identification and characterization of syntenin binding protein in the black tiger shrimp Penaeus monodon,” Journal of Biotechnology, vol. 120, no. 2, pp. 135–145, 2005.
[54]
P. Bangrak, P. Graidist, W. Chotigeat, K. Supamattaya, and A. Phongdara, “A syntenin-like protein with postsynaptic density protein (PDZ) domains produced by black tiger shrimp Penaeus monodon in response to white spot syndrome virus infection,” Diseases of Aquatic Organisms, vol. 49, no. 1, pp. 19–25, 2002.
[55]
D. Moreira, M. Sabrina, F. P. Leivas, L. A. Romano, E. Luis, and E. Ballester, New Bacillus Probiotic Tested for Shrimp, Global Aquaculture Advocate, 2011.
[56]
D. J. W. Moriarty and O. P. Decamp, Probiotics in Aquaculture, AQUA Culture Asia Pacific Magazine, 2005.
[57]
P. Utiswannakul, S. Sangchai, and S. Rengpipat, “Enhanced growth of black tiger shrimp Penaeus monodon by dietary supplementation with Bacillus (BP11) as a probiotic,” Journal of Aquatic Research and Development, vol. 3, no. 4, pp. 2155–9546, 2011.
[58]
U. Scholz, G. Garcia Diaz, D. Ricque, L. E. Cruz Suarez, F. Vargas Albores, and J. Latchford, “Enhancement of vibriosis resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products,” Aquaculture, vol. 176, no. 3-4, pp. 271–283, 1999.
[59]
S. Ajitha, M. Sridhar, N. Sridhar, I. S. B. Singh, and V. Varghese, “Probiotic effects of lactic acid bacteria against Vibrio alginolyticus in Penaeus (Fenneropenaeus) indicus,” Asian Journal of Fishery Sciences, vol. 17, no. 1, pp. 71–80, 2004.
[60]
L. Villamil, A. Figueras, M. Planas, and B. Novoa, “Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics,” Aquaculture, vol. 219, no. 1–4, pp. 43–56, 2003.
[61]
M. G. Bondad-Reantaso, R. P. Subasinghe, J. R. Arthur et al., “Disease and health management in Asian aquaculture,” Veterinary Parasitology, vol. 132, no. 3-4, pp. 249–272, 2005.
[62]
D. Norasma and M. Saleem, Effluent and Disease Management in Traditional Practices of Shrimp Farming: A Case Study on the West Coast of Sabah, Malaysia, Research and Farming Techniques, 2008.
[63]
F. Páez-Osuna, “The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives,” Environmental Management, vol. 28, no. 1, pp. 131–140, 2001.
[64]
I. Karunasagar, M. M. Shivu, S. K. Girisha, G. Krohne, and I. Karunasagar, “Biocontrol of pathogens in shrimp hatcheries using bacteriophages,” Aquaculture, vol. 268, no. 1–4, pp. 288–292, 2007.
[65]
R. Fuller, Probiotics 2: Applications and Practical Aspects, Chapman and Hall, London, UK, 1st edition, 1997.
[66]
R. Fuller, Probiotics: The Scientific Basis, Chapman and Hall, London, UK, 1st edition, 1992.
[67]
R. Fuller, “Probiotics in man and animals,” Journal of Applied Bacteriology, vol. 66, no. 5, pp. 365–378, 1989.
[68]
G. W. Tannock, R. Fuller, and K. Pedersen, “Lactobacillus succession in the piglet digestive tract demonstrated by plasmid profiling,” Applied and Environmental Microbiology, vol. 56, no. 5, pp. 1310–1316, 1999.
[69]
FAO/WHO, “Report of a Joint FAO/WHO expert consultation on evaluation of health and nutritional propeties of probiotics in food including powder milk with live lactic acid bacteria,” in Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, FAO/WHO, Cordoba, Argentina, 2001.
[70]
L. Verschuere, G. Rombaut, P. Sorgeloos, and W. Verstraete, “Probiotic bacteria as biological control agents in aquaculture,” Microbiology and Molecular Biology Reviews, vol. 64, no. 4, pp. 655–671, 2000.
[71]
A. M. Onarheim, R. Wiik, J. Burghardt, and E. Stagkebrandt, “Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarius sp. nov.,” Systematic and Applied Microbiology, vol. 17, no. 3, pp. 370–379, 1994.
[72]
T. Sakata, “Microflora in the digestive tract of fish and shell-fish,” in Microbiology in Poecilotherms, R. Lesel, Ed., pp. 171–176, Elsevier, 1990.
[73]
E. Ring? and O. Vadstein, “Colonization of Vibrio pelagius and Aeromonas caviae in early developing turbot (Scophthalmus maximus L.) larvae,” Journal of Applied Microbiology, vol. 84, no. 2, pp. 227–233, 1998.
[74]
B. Austin, E. Baudet, and M. Stobie, “Inhibition of bacterial fish pathogens by Tetraselmis suecica,” Journal of Fish Diseases, vol. 15, no. 1, pp. 55–61, 1992.
[75]
B. Austin, L. F. Stuckey, P. A. W. Robertson, I. Effendi, and D. R. W. Griffith, “A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii,” Journal of Fish Diseases, vol. 18, no. 1, pp. 93–96, 1995.
[76]
P. A. Douillet and C. J. Langdon, “Use of a probiotic for the culture of larvae of the Pacific oyster (Crassostrea gigas Thunberg),” Aquaculture, vol. 119, no. 1, pp. 25–40, 1994.
[77]
A. Gildberg, A. Johansen, and J. Bogwald, “Growth and survival of Atlantic salmon (Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid bacteria during a challenge trial with Aeromonas salmonicida,” Aquaculture, vol. 138, no. 1–4, pp. 23–34, 1995.
[78]
A. Gildberg, H. Mikkelsen, E. Sandaker, and E. Ring?, “Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua),” Hydrobiologia, vol. 352, no. 1–3, pp. 279–285, 1997.
[79]
W. Phianphak, S. Rengpipat, S. Piyantiratitivorakul, and P. Menasveta, “Probiotic use of Lactobacillus spp. for black tiger shrimp. Penaeus monodon,” Journal of Scientific Research, Chulanokorn University, vol. 24, pp. 41–51, 1999.
[80]
B. Austin and J. G. Day, “Inhibition of prawn pathogenic Vibrio spp. by a commercial spray-dried preparation of Tetraselmis suecica,” Aquaculture, vol. 90, no. 3-4, pp. 389–392, 1990.
[81]
B. Austin and A. C. Billaud, “Inhibition of fish pathogen, Serratia liquefaciens, By an antibiotic producing isolate of Plamococcus recovered from sea water,” Journal of Fish Diseases, vol. 13, no. 6, pp. 553–556, 1990.
[82]
C. P. Dopazo, M. L. Lemos, C. Lodeiros, J. Bolinches, J. L. Barja, and A. E. Toranzo, “Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens,” Journal of Applied Bacteriology, vol. 65, no. 2, pp. 97–101, 1988.
[83]
P. D. Munro, H. A. McLean, A. Barbour, and T. H. Birkbeck, “Stimulation or inhibition of growth of the unicellular alga Pavlovalutheri by bacteria isolated from larval turbot culture systems,” Journal of Applied Bacteriology, vol. 79, no. 5, pp. 519–524, 1995.
[84]
A. Westerdahl, J. C. Olsson, S. Kjelleberg, and P. L. Conway, “Isolation and characterization of turbot (Scophtalmus maximus)-associated bacteria with inhibitory effects against Vibrio anguillarum,” Applied and Environmental Microbiology, vol. 57, no. 8, pp. 2223–2228, 1991.
[85]
E. M. M. Quigley, “Prebiotics and probiotics; modifying and mining the microbiota,” Pharmacological Research, vol. 61, no. 3, pp. 213–218, 2010.
[86]
P. M. Sherman, J. C. Ossa, and H. K. Johnson, “Unravelling mechanisms of action of probiotics,” Nutrition Clinical Practices, vol. 24, no. 1, pp. 10–14, 2009.
[87]
M. A. Mayra, M. Bigret, S. V. Salminen, A. Wright, and D. Marcel, “Industrial use and production of lactic acid bacteria,” in Lactic Acid Bacteria, p. 65, InTech, New York, NY, USA, 1993.
[88]
K. Yasuds and N. A. Taga, “Mass culture method for Artemia salina using bacteria as food,” Medical Education Resources, vol. 18, p. 53, 1980.
[89]
D. J. W. Moriarty, “The role of microorganisms in aquaculture ponds,” Aquaculture, vol. 151, no. 1–4, pp. 333–349, 1997.
[90]
I. Karunasagar, S. K. Otta, I. Karunasagar, and K. Joshua, “Applications of Vibrio vaccine in shrimp culture,” Fishing Chimes, vol. 16, p. 49, 1996.
[91]
P. Soundarapandian, V. Ramanan, and G. K. Dinakaran, “Effect of probiotics on the growth and survival of Penaeus monodon (Fabricius),” Current Research Journal of Social Sciences, vol. 2, no. 2, pp. 51–57, 2010.
[92]
W. H. Holzapfel, P. Haberer, J. Snel, U. Schillinger, and J. H. J. Huisss, “Overview of gut flora and probiotics,” International Journal of Food Microbiology, vol. 41, no. 2, pp. 85–101, 1998.
[93]
C. H. Chiu, Y. K. Guu, C. H. Liu, T. M. Pan, and W. Cheng, “Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum,” Fish and Shellfish Immunology, vol. 23, no. 2, pp. 364–377, 2007.
[94]
M. Castex, P. Lemaire, N. Wabete, and L. Chim, “Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge,” Fish and Shellfish Immunology, vol. 28, no. 4, pp. 622–631, 2010.
[95]
J. Thompson, S. Gregory, S. Plummer, R. J. Shields, and A. F. Rowley, “An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the Pacific White shrimp, Litopenaeus vannamei,” Journal of Applied Microbiology, vol. 109, no. 4, pp. 1177–1187, 2010.
[96]
P. Roch, “Defense mechanisms and disease prevention in farmed marine invertebrates,” Aquaculture, vol. 172, no. 1-2, pp. 125–145, 1999.
[97]
P. Jiravanichpaisal, B. L. Lee, and K. S?derh?ll, “Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization,” Immunobiology, vol. 211, no. 4, pp. 213–236, 2006.
[98]
K. K. Lee, P. C. Liu, G. H. Kou, and S. N. Chen, “Passive immunization of the tiger prawn, Penaeus monodon, using rabbit antisera to Vibrio harveyi,” Letters in Applied Microbiology, vol. 25, no. 1, pp. 34–37, 1997.
[99]
J. Witteveldt, C. C. Cifuentes, J. M. Vlak, and M. C. W. Van Hulten, “Protection of Penaeus monodon against white spot syndrome virus by oral vaccination,” Journal of Virology, vol. 78, no. 4, pp. 2057–2061, 2004.
[100]
N. Rout, S. Kumar, S. Jaganmohan, and V. Murugan, “DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp,” Vaccine, vol. 25, no. 15, pp. 2778–2786, 2007.
[101]
T. Kawai and S. Akira, “Innate immune recognition of viral infection,” Nature Immunology, vol. 7, pp. 131–137, 2006.
[102]
L. Haipeng, K. Soderhall, and P. Jiranvanichpaisal, “Antiviral immunity in Crustaceans,” Fish and Shellfish Immunology, vol. 27, no. 2, pp. 79–88, 2009.
[103]
W. Wang and X. Zhang, “Comparison of antiviral efficiency of immune responses in shrimp,” Fish and Shellfish Immunology, vol. 25, no. 5, pp. 522–527, 2008.
[104]
W. Liu, F. Han, and X. Zhang, “Ran GTPase regulates hemocytic phagocytosis of shrimp by interaction with myosin,” Journal of Proteome Research, vol. 8, no. 3, pp. 1198–1206, 2009.
[105]
W. Wu, L. Wang, and X. Zhang, “Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection,” Virology, vol. 332, no. 2, pp. 578–583, 2005.
[106]
J. Xu, F. Han, and X. Zhang, “Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA,” Antiviral Research, vol. 73, no. 2, pp. 126–131, 2007.
[107]
Y. Ting, Z. Rangrong, and Z. Xiaobo, “The role of White spot syndrome virus (WSSV) VP466 protein in shrimp antiviral phagocytosis,” Fish and Shellfish Immunology, vol. 33, no. 2, pp. 350–358, 2012.
[108]
J. Xu, F. Han, and X. Zhang, “Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA,” Antiviral Research, vol. 73, no. 2, pp. 126–131, 2007.
[109]
Y. Kamei, M. Yoshimizu, Y. Ezura, and T. Kimura, “Screening of bacteria with antiviral activity from fresh water salmonid hatcheries,” Microbiology and Immunology, vol. 32, no. 1, pp. 67–73, 1988.
[110]
S. Direkbusarakom, M. Yoshimizu, Y. Ezura, L. Ruangpan, and Y. Danayadol, “Vibrio spp., the dominant flora in shrimp hatchery against some fish pathogenic viruses,” Journal of Marine Biotechnology, vol. 6, no. 4, pp. 266–267, 1998.
[111]
T. Boti?, T. D. Klingberg, H. Weingartl, and A. Cenci?, “A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria,” International Journal of Food Microbiology, vol. 115, no. 2, pp. 227–234, 2007.
[112]
E. Isolauri, “Probiotics for infectious diarrhoea,” Gut, vol. 52, no. 3, pp. 436–437, 2003.
[113]
S. K. George, K. N. Kaizer, Y. M. Betz, and A. K. Dhar, “Multiplication of Taura syndrome virus in primary hemocyte culture of shrimp (Penaeus vannamei),” Journal of Virological Methods, vol. 172, no. 1-2, pp. 54–59, 2011.
[114]
C. A. Otoshi, S. M. Arce, and S. M. Moss, “Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond,” Aquacultural Engineering, vol. 29, no. 3-4, pp. 93–107, 2003.
[115]
Council Directive 70/524/EEC, “List of the authorized additives in feeding stuffs published in application of Article 9t of Council Directive 70/554/EEC concerning additives in feedingstuffs,” Official Journal of European Union, pp. C50–C144, 2004.