全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antimicrobial Susceptibility of Escherichia coli Isolated from Fresh-Marketed Nile Tilapia (Oreochromis niloticus)

DOI: 10.1155/2014/756539

Full-Text   Cite this paper   Add to My Lib

Abstract:

The contamination of seafood by bacteria of fecal origin, especially Escherichia coli, is a widely documented sanitary problem. The objective of the present study was to isolate E. coli strains from the gills, muscle, and body surface of farmed Nile tilapias (Oreochromis niloticus) fresh-marketed in supermarkets in Fortaleza (Ceará, Brazil), to determine their susceptibility to antibiotics of different families (amikacin, gentamicin, imipenem, cephalothin, cefotaxime, ciprofloxacin, aztreonam, ampicillin, nalidixic acid, tetracycline, and sulfametoxazol-trimetoprim), and to determine the nature of resistance by plasmid curing. Forty-four strains (body surface = 25, gills = 15, muscle = 4) were isolated, all of which were susceptible to amikacin, aztreonam, cefotaxime, ciprofloxacin, gentamicin, and imipenem. Gill and body surface samples yielded 11 isolates resistant to ampicillin, tetracycline, and sulfametoxazol-trimetoprim, 4 of which of plasmidial nature. The multiple antibiotic resistance index was higher for strains isolated from body surface than from gills. The overall high antibiotic susceptibility of E. coli strains isolated from fresh-marketed tilapia was satisfactory, although the occasional finding of plasmidial resistance points to the need for close microbiological surveillance of the farming, handling, and marketing conditions of aquaculture products. 1. Introduction The bacterium Escherichia coli is widely used as indicator of the bacteriological condition of food and environments due to its almost exclusively fecal origin [1]. The presence of E. coli in fresh-marketed seafood indicates recent contamination and is usually attributed to infected handlers or storage on contaminated ice [2]. The intensification of production and the consequent increase in stocking density have made fish farming more vulnerable to disease [3, 4]. The indiscriminate use of antibiotics to treat infections and promote growth has been shown to be inefficient in the long run and to put selective pressure on bacterial populations favoring the development of resistant strains potentially hazardous to public health [5–7]. In fact, bacterial strains resistant to different families of antibiotics have been isolated from environmental samples by a number of researchers [8–10]. Foodborne strains resistant to antibiotics pose a risk to consumers’ health and favor the transference of the phenotype to humans through the food chain [11–13]. There are no reports of illnesses caused by E. coli in farmed fish, but resistant strains may be selected due to the presence of

References

[1]  C. A. Carson, B. L. Shear, M. R. Ellersieck, and A. Asfaw, “Identification of fecal Escherichia coli from humans and animals by ribotyping,” Applied and Environmental Microbiology, vol. 67, no. 4, pp. 1503–1507, 2001.
[2]  A. Lateef, J. K. Oloke, E. B. Gueguim Kana, and E. Pacheco, “The microbiological quality of ice used to cool drinks and foods in Ogbomoso Metropolis, Southwest, Nigeria,” Internet Journal of Food Safety, vol. 8, pp. 39–43, 2004.
[3]  C. A. Shoemaker, J. J. Evans, and P. H. Klesius, “Density and dose: factors affecting mortality of Streptococcus iniae infected tilapia (Oreochromis niloticus),” Aquaculture, vol. 188, no. 3-4, pp. 229–235, 2000.
[4]  A. M. El-Sayed, “Effects of stocking density and feeding levels on growth and feed efficiency of Nile tilapia (Oreochromis niloticus L.) fry,” Aquaculture Research, vol. 33, no. 8, pp. 621–626, 2002.
[5]  D. O. Carneiro, H. C. P. Figueiredo, D. J. Pereira Júnior, A. G. Leal, and P. V. R. Logato, “Perfil de susceptibilidade a antimicrobianos de bactérias isoladas em diferentes sistemas de cultivo de tilápia-do-Nilo (Oreochromis niloticus),” Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 59, no. 4, pp. 869–876, 2007.
[6]  N. Kemper, “Veterinary antibiotics in the aquatic and terrestrial environment,” Ecological Indicators, vol. 8, no. 1, pp. 1–13, 2008.
[7]  M. A. Akond, S. M. R. Hassan, S. Alam, and M. Shirin, “Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of bangladesh,” American Journal of Environmental Sciences, vol. 5, no. 1, pp. 47–52, 2009.
[8]  A. E. van den Bogaard and E. E. Stobberingh, “Epidemiology of resistance to antibiotics: links between animals and humans,” International Journal of Antimicrobial Agents, vol. 14, no. 4, pp. 327–335, 2000.
[9]  S. A. El-Shafai, H. J. Gijzen, F. A. Nasr, and F. A. El-Gohary, “Microbial quality of tilapia reared in fecal-contaminated ponds,” Environmental Research, vol. 95, no. 2, pp. 231–238, 2004.
[10]  R. M. S. Lima, P. C. H. Figueiredo, F. C. Faria, R. H. Picolli, J. S. S. B. Filho, and P. V. R. Logato, “Resistência a antimicrobianos de bactérias oriundas de ambiente de cria??o e filés de tilápias do Nilo (Oreochromis niloticus),” Ciência e Agrotecnologia, vol. 30, no. 1, pp. 126–132, 2006.
[11]  A. Sapkota, A. R. Sapkota, M. Kucharski et al., “Aquaculture practices and potential human health risks: current knowledge and future priorities,” Environment International, vol. 34, no. 8, pp. 1215–1226, 2008.
[12]  S. Ryu, S. Park, S. Choi et al., “Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood,” International Journal of Food Microbiology, vol. 152, no. 1-2, pp. 14–18, 2012.
[13]  A. O. Bolarinwa, T. A. Musefiu, and E. B. Obuko, “The antibiotic resistant patterns of bacterial flora of fish from different aquatic environments from Ibadan, South-West Nigeria,” Advances in Environmental Biology, vol. 5, no. 8, pp. 2039–2047, 2011.
[14]  A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, “Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four danish rainbow trout farms,” Applied and Environmental Microbiology, vol. 66, no. 11, pp. 4908–4915, 2000.
[15]  M. S. Bruun, L. Madsen, and I. Dalsgaard, “Efficiency of oxytetracycline treatment in rainbow trout experimentally infected with Flavobacterium psychrophilum strains having different in vitro antibiotic susceptibilities,” Aquaculture, vol. 215, no. 1–4, pp. 11–20, 2003.
[16]  T. W. Alexander, G. D. Inglis, L. J. Yanke et al., “Farm-to-fork characterization of Escherichia coli associated with feedlot cattle with a known history of antimicrobial use,” International Journal of Food Microbiology, vol. 137, no. 1, pp. 40–48, 2010.
[17]  I. C. Mgbemenai, U. J. Udensi, J. Nnokwe, R. K. Obi, and E. A. Ogbonna, “Antibiotic sensitivity of bacteria pathogen isolated from tilapia aquaculture system in Owerri, Imo State,” Journal of Aquatic Sciences, vol. 27, pp. 15–22, 2012.
[18]  F. P. Downes and K. Ito, Compendium of Methods for Microbiological Examination of Foods, American Public Health Association, 4th edition, 2001.
[19]  A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966.
[20]  (CLSI) Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing, Twentieth Informational Supplement: Supplement M100-S20, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2010.
[21]  P. H. Krumperman, “Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods,” Applied and Environmental Microbiology, vol. 46, no. 1, pp. 165–170, 1983.
[22]  A. Molina-Aja, A. García-Gasca, A. Abreu-Grobois, C. Bolán-Mejía, A. Roque, and B. Gomez-Gil, “Plasmid profiling and antibiotic resistance of Vibrio strains isolated from cultured penaeid shrimp,” FEMS Microbiology Letters, vol. 213, no. 1, pp. 7–12, 2002.
[23]  H. H. Huss, “Quality and quality changes in fresh fish. Food Agriculture Organization (FAO),” Fisheries Technical Paper 348, FAO, Rome, Italy, 1995.
[24]  S. Pao, M. R. Ettinger, M. F. Khalid, A. O. Reid, and B. L. Nerrie, “Microbial quality of raw aquacultured fish fillets procured from internet and local retail markets,” Journal of Food Protection, vol. 71, no. 8, pp. 1544–1549, 2008.
[25]  S. O. Yagoub, “Isolation of Enterobacteriaceae and Pseudomonas spp. from raw fish sold in fish market in Khartoum state,” Journal of Bacteriology Research, vol. 1, pp. 85–88, 2009.
[26]  T. A. Musefiu, E. B. Obuko, and A. O. Bolarinwa, “Isolation and identification of aerobic bacteria flora of the skin and stomach of wild and cultured Clarias Gariepinus and Oreochromis niloticus from Ibadan, Southwest Nigeria,” Journal of Applied Sciences Research, vol. 7, no. 7, pp. 1047–1051, 2011.
[27]  S. C. Mandal, M. Hasan, M. S. Rahman, M. H. Manik, Z. H. Mahmud, and M. D. S. Islam, “Coliform bacteria in Nile Tilapia, Oreochromis niloticus of shrimp-Gher, pond and fish market,” World Journal of Fish and Marine Science, vol. 1, no. 3, pp. 160–166, 2009.
[28]  L. Gram, G. Trolle, and H. H. Huss, “Detection of specific spoilage bacteria from fish stored at low (0°C) and high (20°C) temperatures,” International Journal of Food Microbiology, vol. 4, no. 1, pp. 65–72, 1987.
[29]  H. H. Huss, P. Dalgaard, and L. Gram, “Microbiology of fish and fish products,” in Seafood from Producer to Consumer, Integrated Approach to Quality, J. B. Luten, T. Borresen, and J. Oehlenschl?ger, Eds., pp. 413–430, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1997.
[30]  L. Gram and P. Dalgaard, “Fish spoilage bacteria—problems and solutions,” Current Opinion in Biotechnology, vol. 13, no. 3, pp. 262–266, 2002.
[31]  J. A. Ampofo and G. C. Clerk, “Diversity of bacteria contaminants in tissues of fish cultured in organic waste-fertilized ponds: health implications,” The Open Fish Science Journal, vol. 3, pp. 142–146, 2010.
[32]  L. Feliciano, J. Lee, J. A. Lopes, and M. A. Pascall, “Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice,” Journal of Food Science, vol. 75, no. 4, pp. M231–M238, 2010.
[33]  L. M. Molinari, D. O. Scoaris, R. B. Pedroso et al., “Bacterial microflora in the gastrointestinal tract of Nile tilapia, Oreochromis niloticus, cultured in a semi-intensive system,” Acta Scientiarum—Biological Sciences, vol. 25, no. 2, pp. 267–271, 2003.
[34]  S. C. Jiao, R. M. L. Fami, V. A. D. Pedernal, and E. C. Cabrera, “Prevalence of multiple drug-resistant Escherichia coli from chicken, pig and Nile tilapia (Oreochromis nilotica) intestines sold in wet markets in Manila and the conjugative transferability of the resistance,” Philippine Agricultural Scientist, vol. 90, no. 1, pp. 64–70, 2007.
[35]  F. Wang, L. Jiang, Q. Yang et al., “Prevalence and antimicrobial susceptibility of major foodborne pathogens in imported seafood,” Journal of Food Protection, vol. 74, no. 9, pp. 1451–1461, 2011.
[36]  M. Lamsh?ft, P. Sukul, S. Zühlke, and M. Spiteller, “Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs,” Analytical and Bioanalytical Chemistry, vol. 388, no. 8, pp. 1733–1745, 2007.
[37]  P. Gao, D. Mao, Y. Luo, L. Wang, B. Xu, and L. Xu, “Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment,” Water Research, vol. 46, no. 7, pp. 2355–2364, 2012.
[38]  H. J. Koo and G. J. Woo, “Characterization of antimicrobial resistance of Escherichia coli recovered from foods of animal and fish origin in Korea,” Journal of Foof Protection, vol. 75, no. 5, pp. 966–972, 2012.
[39]  E. A. Tendencia and L. D. dela Pe?a, “Level and percentage recovery of resistance to oxytetracycline and oxolinic acid of bacteria from shrimp ponds,” Aquaculture, vol. 213, no. 1–4, pp. 1–13, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133